utils.c 27.1 KB
Newer Older
1
/*  Copyright (C) 2014-2017 CZ.NIC, z.s.p.o. <knot-dns@labs.nic.cz>
2 3 4 5 6 7 8 9 10 11 12 13

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
14
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
15 16
 */

17 18 19
#include <stdarg.h>
#include <string.h>
#include <stdlib.h>
20
#include <stdio.h>
21
#include <arpa/inet.h>
22
#include <sys/time.h>
23
#include <contrib/cleanup.h>
24
#include <contrib/ccan/asprintf/asprintf.h>
25
#include <ucw/mempool.h>
26
#include <gnutls/gnutls.h>
27 28 29
#include <libknot/descriptor.h>
#include <libknot/dname.h>
#include <libknot/rrtype/rrsig.h>
30
#include <libknot/rrset-dump.h>
31
#include <libknot/version.h>
32
#include <uv.h>
33

34
#include "kresconfig.h"
35 36
#include "lib/defines.h"
#include "lib/utils.h"
37
#include "lib/generic/array.h"
38
#include "lib/nsrep.h"
39
#include "lib/module.h"
40
#include "lib/resolve.h"
41

42 43

/* Always compile-in log symbols, even if disabled. */
44
#undef kr_verbose_status
45 46
#undef kr_verbose_set
#undef kr_log_verbose
47

48
/* Logging & debugging */
49
bool kr_verbose_status = false;
50

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
void *mm_realloc(knot_mm_t *mm, void *what, size_t size, size_t prev_size)
{
	if (mm) {
		void *p = mm->alloc(mm->ctx, size);
		if (p == NULL) {
			return NULL;
		} else {
			if (what) {
				memcpy(p, what,
				       prev_size < size ? prev_size : size);
			}
			mm_free(mm, what);
			return p;
		}
	} else {
		return realloc(what, size);
	}
}
69 70 71 72 73 74

void *mm_malloc(void *ctx, size_t n)
{
	(void)ctx;
	return malloc(n);
}
75 76 77 78 79 80 81 82 83 84 85 86
void *mm_malloc_aligned(void *ctx, size_t n)
{
	size_t alignment = (size_t)ctx;
	void *res;
	int err = posix_memalign(&res, alignment, n);
	if (err == 0) {
		return res;
	} else {
		assert(err == -1 && errno == ENOMEM);
		return NULL;
	}
}
87

88 89 90 91 92
/*
 * Macros.
 */
#define strlen_safe(x) ((x) ? strlen(x) : 0)

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
/**
 * @internal Convert 16bit unsigned to string, keeps leading spaces.
 * @note Always fills dst length = 5
 * Credit: http://computer-programming-forum.com/46-asm/7aa4b50bce8dd985.htm
 */
static inline int u16tostr(uint8_t *dst, uint16_t num)
{
	uint32_t tmp = num * (((1 << 28) / 10000) + 1) - (num / 4);
	for(size_t i = 0; i < 5; i++) {
		dst[i] = '0' + (char) (tmp >> 28);
		tmp = (tmp & 0x0fffffff) * 10;
	}
	return 5;
}

108 109 110
/*
 * Cleanup callbacks.
 */
111

112 113
static void kres_gnutls_log(int level, const char *message)
{
114
	kr_log_verbose("[gnutls] (%d) %s", level, message);
115 116
}

117
bool kr_verbose_set(bool status)
118
{
119
#ifndef NOVERBOSELOG
120
	kr_verbose_status = status;
121 122 123 124 125 126 127

	/* gnutls logs messages related to our TLS and also libdnssec,
	 * and the logging is set up in a global way only */
	if (status) {
		gnutls_global_set_log_function(kres_gnutls_log);
	}
	gnutls_global_set_log_level(status ? 5 : 0);
128
#endif
129
	return kr_verbose_status;
130 131
}

132
void kr_log_verbose(const char *fmt, ...)
133
{
134
	if (unlikely(kr_verbose_status)) {
135 136 137 138 139
		va_list args;
		va_start(args, fmt);
		vprintf(fmt, args);
		va_end(args);
	}
140 141
}

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
void kr_log_qverbose_impl(const struct kr_query *qry, const char *cls, const char *fmt, ...)
{
	unsigned ind = 0;
	for (const struct kr_query *q = qry; q; q = q->parent)
		ind += 2;
	uint32_t qry_uid = qry ? qry->uid : 0;
	uint32_t req_uid = qry && qry->request ? qry->request->uid : 0;
	/* Simplified kr_log_verbose() calls, first prefix then passed fmt...
	 * Calling it would take about the same amount of code. */
	printf("[%05u.%02u][%s] %*s", req_uid, qry_uid, cls, ind, "");
	va_list args;
	va_start(args, fmt);
	vprintf(fmt, args);
	va_end(args);
}

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
bool kr_log_trace(const struct kr_query *query, const char *source, const char *fmt, ...)
{
	if (!kr_log_trace_enabled(query)) {
		return false;
	}

	auto_free char *msg = NULL;

	va_list args;
	va_start(args, fmt);
	int len = vasprintf(&msg, fmt, args);
	va_end(args);

	/* Check formatting result before logging */
	if (len < 0) {
		return false;
	}

	query->request->trace_log(query, source, msg);
	return true;
}

180 181
char* kr_strcatdup(unsigned n, ...)
{
182 183 184 185
	if (n < 1) {
		return NULL;
	}

186 187 188 189 190 191
	/* Calculate total length */
	size_t total_len = 0;
	va_list vl;
	va_start(vl, n);
	for (unsigned i = 0; i < n; ++i) {
		char *item = va_arg(vl, char *);
192
		const size_t new_len = total_len + strlen_safe(item);
193 194 195 196
		if (unlikely(new_len < total_len)) {
			va_end(vl);
			return NULL;
		}
197
		total_len = new_len;
198 199 200 201 202 203
	}
	va_end(vl);

	/* Allocate result and fill */
	char *result = NULL;
	if (total_len > 0) {
204
		if (unlikely(total_len + 1 == 0)) return NULL;
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
		result = malloc(total_len + 1);
	}
	if (result) {
		char *stream = result;
		va_start(vl, n);
		for (unsigned i = 0; i < n; ++i) {
			char *item = va_arg(vl, char *);
			if (item) {
				size_t len = strlen(item);
				memcpy(stream, item, len + 1);
				stream += len;
			}
		}
		va_end(vl);
	}

	return result;
}
223

224
int kr_memreserve(void *baton, char **mem, size_t elm_size, size_t want, size_t *have)
225 226 227 228
{
    if (*have >= want) {
        return 0;
    } else {
229
        knot_mm_t *pool = baton;
230 231 232
        size_t next_size = array_next_count(want);
        void *mem_new = mm_alloc(pool, next_size * elm_size);
        if (mem_new != NULL) {
233 234 235 236
	    if (*mem) { /* 0-length memcpy from NULL isn't technically OK */
		memcpy(mem_new, *mem, (*have)*(elm_size));
		mm_free(pool, *mem);
	    }
237 238 239 240 241 242 243
            *mem = mem_new;
            *have = next_size;
            return 0;
        }
    }
    return -1;
}
244

245
static int pkt_recycle(knot_pkt_t *pkt, bool keep_question)
246
{
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
	/* The maximum size of a header + query name + (class, type) */
	uint8_t buf[KNOT_WIRE_HEADER_SIZE + KNOT_DNAME_MAXLEN + 2 * sizeof(uint16_t)];

	/* Save header and the question section */
	size_t base_size = KNOT_WIRE_HEADER_SIZE;
	if (keep_question) {
		base_size += knot_pkt_question_size(pkt);
	}
	assert(base_size <= sizeof(buf));
	memcpy(buf, pkt->wire, base_size);

	/* Clear the packet and its auxiliary structures */
	knot_pkt_clear(pkt);

	/* Restore header and question section and clear counters */
	pkt->size = base_size;
	memcpy(pkt->wire, buf, base_size);
	knot_wire_set_qdcount(pkt->wire, keep_question);
265 266 267
	knot_wire_set_ancount(pkt->wire, 0);
	knot_wire_set_nscount(pkt->wire, 0);
	knot_wire_set_arcount(pkt->wire, 0);
268 269

	/* Reparse question */
270 271 272 273
	knot_pkt_begin(pkt, KNOT_ANSWER);
	return knot_pkt_parse_question(pkt);
}

274 275 276 277 278
int kr_pkt_recycle(knot_pkt_t *pkt)
{
	return pkt_recycle(pkt, false);
}

279 280
int kr_pkt_clear_payload(knot_pkt_t *pkt)
{
281
	return pkt_recycle(pkt, knot_wire_get_qdcount(pkt->wire));
282 283
}

284 285 286
int kr_pkt_put(knot_pkt_t *pkt, const knot_dname_t *name, uint32_t ttl,
               uint16_t rclass, uint16_t rtype, const uint8_t *rdata, uint16_t rdlen)
{
287 288
	/* LATER(opt.): there's relatively lots of copying, but ATM kr_pkt_put()
	 * isn't considered to be used in any performance-critical parts (just lua). */
289 290 291 292 293
	if (!pkt || !name)  {
		return kr_error(EINVAL);
	}
	/* Create empty RR */
	knot_rrset_t rr;
294
	knot_rrset_init(&rr, knot_dname_copy(name, &pkt->mm), rtype, rclass, ttl);
295
	/* Create RDATA */
296
	knot_rdata_t *rdata_tmp = mm_alloc(&pkt->mm, offsetof(knot_rdata_t, data) + rdlen);
297 298
	knot_rdata_init(rdata_tmp, rdlen, rdata);
	knot_rdataset_add(&rr.rrs, rdata_tmp, &pkt->mm);
299
	mm_free(&pkt->mm, rdata_tmp); /* we're always on mempool for now, but whatever */
300 301 302
	/* Append RR */
	return knot_pkt_put(pkt, 0, &rr, KNOT_PF_FREE);
}
303

304 305 306 307 308 309 310
void kr_pkt_make_auth_header(knot_pkt_t *pkt)
{
	assert(pkt && pkt->wire);
	knot_wire_clear_ad(pkt->wire);
	knot_wire_set_aa(pkt->wire);
}

311 312 313 314 315 316 317 318 319 320 321 322
const char *kr_inaddr(const struct sockaddr *addr)
{
	if (!addr) {
		return NULL;
	}
	switch (addr->sa_family) {
	case AF_INET:  return (const char *)&(((const struct sockaddr_in *)addr)->sin_addr);
	case AF_INET6: return (const char *)&(((const struct sockaddr_in6 *)addr)->sin6_addr);
	default:       return NULL;
	}
}

323 324 325 326 327 328 329
int kr_inaddr_family(const struct sockaddr *addr)
{
	if (!addr)
		return AF_UNSPEC;
	return addr->sa_family;
}

330 331 332 333 334
int kr_inaddr_len(const struct sockaddr *addr)
{
	if (!addr) {
		return kr_error(EINVAL);
	}
335
	return kr_family_len(addr->sa_family);
336 337
}

338 339 340 341 342 343 344 345 346 347 348 349
int kr_sockaddr_len(const struct sockaddr *addr)
{
	if (!addr) {
		return kr_error(EINVAL);
	}
	switch (addr->sa_family) {
	case AF_INET:  return sizeof(struct sockaddr_in);
	case AF_INET6: return sizeof(struct sockaddr_in6);
	default:       return kr_error(EINVAL);
	}
}

350 351 352 353 354 355 356 357 358 359 360 361 362 363
int kr_sockaddr_cmp(const struct sockaddr *left, const struct sockaddr *right)
{
	if (!left || !right) {
		return kr_error(EINVAL);
	}
	if (left->sa_family != right->sa_family) {
		return kr_error(EFAULT);
	}
	if (left->sa_family == AF_INET) {
		struct sockaddr_in *left_in = (struct sockaddr_in *)left;
		struct sockaddr_in *right_in = (struct sockaddr_in *)right;
		if (left_in->sin_addr.s_addr != right_in->sin_addr.s_addr) {
			return kr_error(EFAULT);
		}
364 365 366
		if (left_in->sin_port != right_in->sin_port) {
			return kr_error(EFAULT);
		}
367 368 369 370 371 372 373
	} else if (left->sa_family == AF_INET6) {
		struct sockaddr_in6 *left_in6 = (struct sockaddr_in6 *)left;
		struct sockaddr_in6 *right_in6 = (struct sockaddr_in6 *)right;
		if (memcmp(&left_in6->sin6_addr, &right_in6->sin6_addr,
			   sizeof(struct in6_addr)) != 0) {
			return kr_error(EFAULT);
		}
374 375 376
		if (left_in6->sin6_port != right_in6->sin6_port) {
			return kr_error(EFAULT);
		}
377 378 379 380 381 382
	} else {
		return kr_error(ENOENT);
	}
	return kr_ok();
}

383 384 385 386 387 388 389 390 391 392 393 394
uint16_t kr_inaddr_port(const struct sockaddr *addr)
{
	if (!addr) {
		return 0;
	}
	switch (addr->sa_family) {
	case AF_INET:  return ntohs(((const struct sockaddr_in *)addr)->sin_port);
	case AF_INET6: return ntohs(((const struct sockaddr_in6 *)addr)->sin6_port);
	default:       return 0;
	}
}

395 396 397 398 399 400 401 402 403 404 405 406
void kr_inaddr_set_port(struct sockaddr *addr, uint16_t port)
{
	if (!addr) {
		return;
	}
	switch (addr->sa_family) {
	case AF_INET:  ((struct sockaddr_in *)addr)->sin_port = htons(port);
	case AF_INET6: ((struct sockaddr_in6 *)addr)->sin6_port = htons(port);
	default: break;
	}
}

407 408
int kr_inaddr_str(const struct sockaddr *addr, char *buf, size_t *buflen)
{
409 410 411 412 413 414 415 416 417 418
	if (!addr) {
		return kr_error(EINVAL);
	}
	return kr_ntop_str(addr->sa_family, kr_inaddr(addr), kr_inaddr_port(addr),
			   buf, buflen);
}

int kr_ntop_str(int family, const void *src, uint16_t port, char *buf, size_t *buflen)
{
	if (!src || !buf || !buflen) {
419 420 421
		return kr_error(EINVAL);
	}

422
	if (!inet_ntop(family, src, buf, *buflen)) {
423 424
		return kr_error(errno);
	}
425 426 427 428 429
	const int len = strlen(buf);
	const int len_need = len + 1 + 5 + 1;
	if (len_need > *buflen) {
		*buflen = len_need;
		return kr_error(ENOSPC);
430
	}
431 432
	*buflen = len_need;
	buf[len] = '#';
433
	u16tostr((uint8_t *)&buf[len + 1], port);
434 435
	buf[len_need - 1] = 0;
	return kr_ok();
436 437
}

438
int kr_straddr_family(const char *addr)
439 440 441 442 443 444 445 446
{
	if (!addr) {
		return kr_error(EINVAL);
	}
	if (strchr(addr, ':')) {
		return AF_INET6;
	}
	return AF_INET;
447 448
}

449 450
int kr_family_len(int family)
{
451 452 453 454 455
	switch (family) {
	case AF_INET:  return sizeof(struct in_addr);
	case AF_INET6: return sizeof(struct in6_addr);
	default:       return kr_error(EINVAL);
	}
456 457
}

458
struct sockaddr * kr_straddr_socket(const char *addr, int port, knot_mm_t *pool)
459 460 461
{
	switch (kr_straddr_family(addr)) {
	case AF_INET: {
462
		struct sockaddr_in *res = mm_alloc(pool, sizeof(*res));
463 464 465
		if (uv_ip4_addr(addr, port, res) >= 0) {
			return (struct sockaddr *)res;
		} else {
466
			mm_free(pool, res);
467 468 469 470
			return NULL;
		}
	}
	case AF_INET6: {
471
		struct sockaddr_in6 *res = mm_alloc(pool, sizeof(*res));
472 473 474
		if (uv_ip6_addr(addr, port, res) >= 0) {
			return (struct sockaddr *)res;
		} else {
475
			mm_free(pool, res);
476 477 478 479
			return NULL;
		}
	}
	default:
480
		assert(!EINVAL);
481 482 483 484
		return NULL;
	}
}

485 486 487 488 489 490 491 492 493 494 495 496 497
int kr_straddr_subnet(void *dst, const char *addr)
{
	if (!dst || !addr) {
		return kr_error(EINVAL);
	}
	/* Parse subnet */
	int bit_len = 0;
	int family = kr_straddr_family(addr);
	auto_free char *addr_str = strdup(addr);
	char *subnet = strchr(addr_str, '/');
	if (subnet) {
		*subnet = '\0';
		subnet += 1;
498
		bit_len = strtol(subnet, NULL, 10);
499 500 501 502 503
		/* Check client subnet length */
		const int max_len = (family == AF_INET6) ? 128 : 32;
		if (bit_len < 0 || bit_len > max_len) {
			return kr_error(ERANGE);
		}
504 505 506
	} else {
		/* No subnet, use maximal subnet length. */
		bit_len = (family == AF_INET6) ? 128 : 32;
507 508 509 510 511 512 513 514 515 516
	}
	/* Parse address */
	int ret = inet_pton(family, addr_str, dst);
	if (ret < 0) {
		return kr_error(EILSEQ);
	}

	return bit_len;
}

517 518
int kr_straddr_split(const char *instr, char ipaddr[static restrict (INET6_ADDRSTRLEN + 1)],
		     uint16_t *port)
519
{
520
	assert(instr && ipaddr && port);
521
	/* Find where port number starts. */
522
	const char *p_start = strchr(instr, '@');
523
	if (!p_start)
524 525 526 527 528 529 530 531 532 533 534 535
		p_start = strchr(instr, '#');
	if (p_start) { /* Get and check the port number. */
		if (p_start[1] == '\0') /* Don't accept empty port string. */
			return kr_error(EILSEQ);
		char *p_end;
		long p = strtol(p_start + 1, &p_end, 10);
		if (*p_end != '\0' || p <= 0 || p > UINT16_MAX)
			return kr_error(EILSEQ);
		*port = p;
	}
	/* Copy the address. */
	const size_t addrlen = p_start ? p_start - instr : strlen(instr);
536
	if (addrlen > INET6_ADDRSTRLEN)
537 538 539 540
		return kr_error(EILSEQ);
	memcpy(ipaddr, instr, addrlen);
	ipaddr[addrlen] = '\0';
	return kr_ok();
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
}

int kr_straddr_join(const char *addr, uint16_t port, char *buf, size_t *buflen)
{
	if (!addr || !buf || !buflen) {
		return kr_error(EINVAL);
	}

	struct sockaddr_storage ss;
	int family = kr_straddr_family(addr);
	if (family == kr_error(EINVAL) || !inet_pton(family, addr, &ss)) {
		return kr_error(EINVAL);
	}

	int len = strlen(addr);
	if (len + 6 >= *buflen) {
		return kr_error(ENOSPC);
	}

	memcpy(buf, addr, len + 1);
	buf[len] = '#';
	u16tostr((uint8_t *)&buf[len + 1], port);
	len += 6;
	buf[len] = 0;
	*buflen = len;

	return kr_ok();
}

570 571
int kr_bitcmp(const char *a, const char *b, int bits)
{
572 573 574 575 576 577 578 579 580 581
	/* We're using the function from lua directly, so at least for now
	 * we avoid crashing on bogus inputs.  Meaning: NULL is ordered before
	 * anything else, and negative length is the same as zero.
	 * TODO: review the call sites and probably remove the checks. */
	if (bits <= 0 || (!a && !b)) {
		return 0;
	} else if (!a) {
		return -1;
	} else if (!b) {
		return 1;
582
	}
583

584
	assert((a && b && bits >= 0)  ||  bits == 0);
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
	/* Compare part byte-divisible part. */
	const size_t chunk = bits / 8;
	int ret = memcmp(a, b, chunk);
	if (ret != 0) {
		return ret;
	}
	a += chunk;
	b += chunk;
	bits -= chunk * 8;
	/* Compare last partial byte address block. */
	if (bits > 0) {
		const size_t shift = (8 - bits);
		ret = ((uint8_t)(*a >> shift) - (uint8_t)(*b >> shift));
	}
	return ret;
600 601
}

602 603
int kr_rrkey(char *key, uint16_t class, const knot_dname_t *owner,
	     uint16_t type, uint16_t additional)
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
{
	if (!key || !owner) {
		return kr_error(EINVAL);
	}
	uint8_t *key_buf = (uint8_t *)key;
	int ret = u16tostr(key_buf, class);
	if (ret <= 0) {
		return ret;
	}
	key_buf += ret;
	ret = knot_dname_to_wire(key_buf, owner, KNOT_DNAME_MAXLEN);
	if (ret <= 0) {
		return ret;
	}
	knot_dname_to_lower(key_buf);
	key_buf += ret - 1;
	ret = u16tostr(key_buf, type);
	if (ret <= 0) {
		return ret;
	}
	key_buf += ret;
	ret = u16tostr(key_buf, additional);
	if (ret <= 0) {
		return ret;
	}
	key_buf[ret] = '\0';
	return (char *)&key_buf[ret] - key;
}

633 634 635 636 637
/** Return whether two RRsets match, i.e. would form the same set; see ranked_rr_array_t */
static inline bool rrsets_match(const knot_rrset_t *rr1, const knot_rrset_t *rr2)
{
	bool match = rr1->type == rr2->type && rr1->rclass == rr2->rclass;
	if (match && rr2->type == KNOT_RRTYPE_RRSIG) {
638 639
		match = match && knot_rrsig_type_covered(rr1->rrs.rdata)
				  == knot_rrsig_type_covered(rr2->rrs.rdata);
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
	}
	match = match && knot_dname_is_equal(rr1->owner, rr2->owner);
	return match;
}

/** Ensure that an index in a ranked array won't cause "duplicate" RRsets on wire.
 *
 * Other entries that would form the same RRset get to_wire = false.
 * See also rrsets_match.
 */
static int to_wire_ensure_unique(ranked_rr_array_t *array, size_t index)
{
	bool ok = array && index < array->len;
	if (!ok) {
		assert(false);
		return kr_error(EINVAL);
	}

	const struct ranked_rr_array_entry *e0 = array->at[index];
	if (!e0->to_wire) {
		return kr_ok();
	}

	for (ssize_t i = array->len - 1; i >= 0; --i) {
		/* ^ iterate backwards, as the end is more likely in CPU caches */
		struct ranked_rr_array_entry *ei = array->at[i];
		if (ei->qry_uid == e0->qry_uid /* assumption: no duplicates within qry */
		    || !ei->to_wire /* no use for complex comparison if @to_wire */
		   ) {
			continue;
		}
		if (rrsets_match(ei->rr, e0->rr)) {
			ei->to_wire = false;
		}
	}
	return kr_ok();
}

678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
int kr_ranked_rrarray_add(ranked_rr_array_t *array, const knot_rrset_t *rr,
			  uint8_t rank, bool to_wire, uint32_t qry_uid, knot_mm_t *pool)
{
	/* rr always has one record per rrset
	 * check if another rrset with the same
	 * rclass/type/owner combination exists within current query
	 * and merge if needed */
	for (ssize_t i = array->len - 1; i >= 0; --i) {
		ranked_rr_array_entry_t *stashed = array->at[i];
		if (stashed->yielded) {
			break;
		}
		if (stashed->qry_uid != qry_uid) {
			break;
		}
693 694 695 696
		if (!rrsets_match(stashed->rr, rr)) {
			continue;
		}
		/* Found the entry to merge with.  Check consistency and merge. */
697
		bool ok = stashed->rank == rank && !stashed->cached;
698 699 700
		if (!ok) {
			assert(false);
			return kr_error(EEXIST);
701
		}
702 703 704 705 706
		/* It may happen that an RRset is first considered useful
		 * (to_wire = false, e.g. due to being part of glue),
		 * and later we may find we also want it in the answer. */
		stashed->to_wire = stashed->to_wire || to_wire;

707
		return knot_rdataset_merge(&stashed->rr->rrs, &rr->rrs, pool);
708 709 710 711 712 713 714 715 716 717 718 719 720 721
	}

	/* No stashed rrset found, add */
	int ret = array_reserve_mm(*array, array->len + 1, kr_memreserve, pool);
	if (ret != 0) {
		return kr_error(ENOMEM);
	}

	ranked_rr_array_entry_t *entry = mm_alloc(pool, sizeof(ranked_rr_array_entry_t));
	if (!entry) {
		return kr_error(ENOMEM);
	}
	knot_rrset_t *copy = knot_rrset_copy(rr, pool);
	if (!copy) {
722
		mm_free(pool, entry);
723 724 725 726 727 728
		return kr_error(ENOMEM);
	}

	entry->qry_uid = qry_uid;
	entry->rr = copy;
	entry->rank = rank;
729
	entry->revalidation_cnt = 0;
730 731 732
	entry->cached = false;
	entry->yielded = false;
	entry->to_wire = to_wire;
733 734 735 736 737 738
	if (array_push(*array, entry) < 0) {
		/* Silence coverity.  It shouldn't be possible to happen,
		 * due to the array_reserve_mm call above. */
		mm_free(pool, entry);
		return kr_error(ENOMEM);
	}
739 740

	return to_wire_ensure_unique(array, array->len - 1);
741 742
}

743
int kr_ranked_rrarray_set_wire(ranked_rr_array_t *array, bool to_wire,
744 745
			       uint32_t qry_uid, bool check_dups,
			       bool (*extraCheck)(const ranked_rr_array_entry_t *))
746 747 748
{
	for (size_t i = 0; i < array->len; ++i) {
		ranked_rr_array_entry_t *entry = array->at[i];
749 750 751
		if (entry->qry_uid != qry_uid) {
			continue;
		}
752 753 754
		if (extraCheck != NULL && !extraCheck(entry)) {
			continue;
		}
755
		entry->to_wire = to_wire;
756 757 758
		if (check_dups) {
			int ret = to_wire_ensure_unique(array, i);
			if (ret) return ret;
759 760 761 762 763 764
		}
	}
	return kr_ok();
}


765 766
static char *callprop(struct kr_module *module, const char *prop, const char *input, void *env)
{
767
	if (!module || !module->props || !prop) {
768 769
		return NULL;
	}
770
	for (const struct kr_prop *p = module->props; p && p->name; ++p) {
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
		if (p->cb != NULL && strcmp(p->name, prop) == 0) {
			return p->cb(env, module, input);
		}
	}
	return NULL;
}

char *kr_module_call(struct kr_context *ctx, const char *module, const char *prop, const char *input)
{
	if (!ctx || !ctx->modules || !module || !prop) {
		return NULL;
	}
	module_array_t *mod_list = ctx->modules;
	for (size_t i = 0; i < mod_list->len; ++i) {
		struct kr_module *mod = mod_list->at[i];
		if (strcmp(mod->name, module) == 0) {
			return callprop(mod, prop, input, ctx);
		}
	}
	return NULL;
791
}
792

793 794 795 796 797 798 799 800
static void flags_to_str(char *dst, const knot_pkt_t *pkt, size_t maxlen)
{
	int offset = 0;
	int ret = 0;
	struct {
		uint8_t (*get) (const uint8_t *packet);
		char name[3];
	} flag[7] = {
801 802 803 804 805
		{knot_wire_get_qr, "qr"},
		{knot_wire_get_aa, "aa"},
		{knot_wire_get_rd, "rd"},
		{knot_wire_get_ra, "ra"},
		{knot_wire_get_tc, "tc"},
806 807
		{knot_wire_get_ad, "ad"},
		{knot_wire_get_cd, "cd"}
808 809 810 811 812 813 814 815 816 817 818
	};
	for (int i = 0; i < 7; ++i) {
		if (!flag[i].get(pkt->wire)) {
			continue;
		}
		ret = snprintf(dst + offset, maxlen, "%s ", flag[i].name);
		if (ret <= 0 || ret >= maxlen) {
			dst[0] = 0;
			return;
		}
		offset += ret;
819
		maxlen -= ret;
820 821 822 823
	}
	dst[offset] = 0;
}

824
static char *print_section_opt(struct mempool *mp, char *endp, const knot_rrset_t *rr, const uint8_t rcode)
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
{
	uint8_t ercode = knot_edns_get_ext_rcode(rr);
	uint16_t ext_rcode_id = knot_edns_whole_rcode(ercode, rcode);
	const char *ext_rcode_str = "Unused";
	const knot_lookup_t *ext_rcode;

	if (ercode > 0) {
		ext_rcode = knot_lookup_by_id(knot_rcode_names, ext_rcode_id);
		if (ext_rcode != NULL) {
			ext_rcode_str = ext_rcode->name;
		} else {
			ext_rcode_str = "Unknown";
		}
	}

840 841 842 843 844 845 846
	return mp_printf_append(mp, endp,
		";; EDNS PSEUDOSECTION:\n;; "
		"Version: %u; flags: %s; UDP size: %u B; ext-rcode: %s\n\n",
		knot_edns_get_version(rr),
		(knot_edns_do(rr) != 0) ? "do" : "",
		knot_edns_get_payload(rr),
		ext_rcode_str);
847 848 849

}

850
char *kr_pkt_text(const knot_pkt_t *pkt)
851
{
852 853 854 855 856 857
	if (!pkt) {
		return NULL;
	}

	struct mempool *mp = mp_new(512);

858 859 860
	static const char * snames[] = {
		";; ANSWER SECTION", ";; AUTHORITY SECTION", ";; ADDITIONAL SECTION"
	};
861
	char flags[32];
862
	uint8_t pkt_rcode = knot_wire_get_rcode(pkt->wire);
863 864 865 866 867 868
	uint8_t pkt_opcode = knot_wire_get_opcode(pkt->wire);
	const char *rcode_str = "Unknown";
	const char *opcode_str = "Unknown";
	const knot_lookup_t *rcode = knot_lookup_by_id(knot_rcode_names, pkt_rcode);
	const knot_lookup_t *opcode = knot_lookup_by_id(knot_opcode_names, pkt_opcode);
	uint16_t qry_id = knot_wire_get_id(pkt->wire);
869
	uint16_t qdcount = knot_wire_get_qdcount(pkt->wire);
870 871 872 873 874 875 876

	if (rcode != NULL) {
		rcode_str = rcode->name;
	}
	if (opcode != NULL) {
		opcode_str = opcode->name;
	}
877
	flags_to_str(flags, pkt, sizeof(flags));
878

879 880 881 882 883 884 885 886 887 888
	char *ptr = mp_printf(mp,
		";; ->>HEADER<<- opcode: %s; status: %s; id: %hu\n"
		";; Flags: %s QUERY: %hu; ANSWER: %hu; "
		"AUTHORITY: %hu; ADDITIONAL: %hu\n\n",
		opcode_str, rcode_str, qry_id,
		flags,
		qdcount,
		knot_wire_get_ancount(pkt->wire),
		knot_wire_get_nscount(pkt->wire),
		knot_wire_get_arcount(pkt->wire));
889 890

	if (knot_pkt_has_edns(pkt)) {
891
		ptr = print_section_opt(mp, ptr, pkt->opt_rr, knot_wire_get_rcode(pkt->wire));
892 893
	}

894
	if (qdcount == 1) {
895 896
		KR_DNAME_GET_STR(qname, knot_pkt_qname(pkt));
		KR_RRTYPE_GET_STR(rrtype, knot_pkt_qtype(pkt));
897
		ptr = mp_printf_append(mp, ptr, ";; QUESTION SECTION\n%s\t\t%s\n", qname, rrtype);
898
	} else if (qdcount > 1) {
899
		ptr = mp_printf_append(mp, ptr, ";; Warning: unsupported QDCOUNT %hu\n", qdcount);
900
	}
901 902

	for (knot_section_t i = KNOT_ANSWER; i <= KNOT_ADDITIONAL; ++i) {
903
		const knot_pktsection_t *sec = knot_pkt_section(pkt, i);
904
		if (sec->count == 0 || knot_pkt_rr(sec, 0)->type == KNOT_RRTYPE_OPT) {
905
			/* OPT RRs are _supposed_ to be the last ^^, if they appear */
906 907
			continue;
		}
908 909

		ptr = mp_printf_append(mp, ptr, "\n%s\n", snames[i - KNOT_ANSWER]);
910 911
		for (unsigned k = 0; k < sec->count; ++k) {
			const knot_rrset_t *rr = knot_pkt_rr(sec, k);
912 913 914 915 916
			if (rr->type == KNOT_RRTYPE_OPT) {
				continue;
			}
			auto_free char *rr_text = kr_rrset_text(rr);
			ptr = mp_printf_append(mp, ptr, "%s", rr_text);
917 918
		}
	}
919

920 921 922 923
	/* Close growing buffer and duplicate result before deleting */
	char *result = strdup(ptr);
	mp_delete(mp);
	return result;
924 925
}

926
char *kr_rrset_text(const knot_rrset_t *rr)
927
{
928 929 930
	if (!rr) {
		return NULL;
	}
931

932
	/* Note: knot_rrset_txt_dump will double the size until the rrset fits */
933 934
	size_t bufsize = 128;
	char *buf = malloc(bufsize);
935 936 937 938 939 940 941
	int ret = knot_rrset_txt_dump(rr, &buf, &bufsize, &KNOT_DUMP_STYLE_DEFAULT);
	if (ret < 0) {
		free(buf);
		return NULL;
	}

	return buf;
942
}
943

Vitezslav Kriz's avatar
Vitezslav Kriz committed
944 945 946 947 948
uint64_t kr_now()
{
	return uv_now(uv_default_loop());
}

949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
const char *kr_strptime_diff(const char *format, const char *time1_str,
		             const char *time0_str, double *diff) {
	assert(format != NULL);
	assert(time1_str != NULL);
	assert(time0_str != NULL);
	assert(diff != NULL);

	struct tm time1_tm;
	time_t time1_u;
	struct tm time0_tm;
	time_t time0_u;

	char *err = strptime(time1_str, format, &time1_tm);
	if (err == NULL || err != time1_str + strlen(time1_str))
		return "strptime failed for time1";
	time1_tm.tm_isdst = -1; /* determine if DST is active or not */
	time1_u = mktime(&time1_tm);
	if (time1_u == (time_t)-1)
		return "mktime failed for time1";

	err = strptime(time0_str, format, &time0_tm);
	if (err == NULL || err != time0_str + strlen(time0_str))
		return "strptime failed for time0";
	time0_tm.tm_isdst = -1; /* determine if DST is active or not */
	time0_u = mktime(&time0_tm);
	if (time0_u == (time_t)-1)
		return "mktime failed for time0";
	*diff = difftime(time1_u, time0_u);

	return NULL;
}

981
int knot_dname_lf2wire(knot_dname_t * const dst, uint8_t len, const uint8_t *lf)
Vladimír Čunát's avatar
.  
Vladimír Čunát committed
982
{
983 984
	knot_dname_t *d = dst; /* moving "cursor" as we write it out */
	bool ok = d && (len == 0 || lf);
Vladimír Čunát's avatar
.  
Vladimír Čunát committed
985 986 987 988
	if (!ok) {
		assert(false);
		return kr_error(EINVAL);
	}
989 990 991 992 993
	/* we allow the final zero byte to be omitted */
	if (!len) {
		goto finish;
	}
	if (lf[len - 1]) {
Vladimír Čunát's avatar
.  
Vladimír Čunát committed
994
		++len;
995 996 997
	}
	/* convert the name, one label at a time */
	int label_end = len - 1; /* index of the zero byte after the current label */
Vladimír Čunát's avatar
.  
Vladimír Čunát committed
998 999
	while (label_end >= 0) {
		/* find label_start */
1000
		int i = label_end - 1;
Vladimír Čunát's avatar
.  
Vladimír Čunát committed
1001 1002
		while (i >= 0 && lf[i])
			--i;
1003 1004 1005 1006
		const int label_start = i + 1; /* index of the first byte of the current label */
		const int label_len = label_end - label_start;
		assert(label_len >= 0);
		if (label_len > 63 || label_len <= 0)
Vladimír Čunát's avatar
.  
Vladimír Čunát committed
1007 1008
			return kr_error(EILSEQ);
		/* write the label */
1009 1010 1011 1012
		*d = label_len;
		++d;
		memcpy(d, lf + label_start, label_len);
		d += label_len;
Vladimír Čunát's avatar
.  
Vladimír Čunát committed
1013
		/* next label */
1014
		label_end = label_start - 1;
Vladimír Čunát's avatar
.  
Vladimír Čunát committed
1015
	}
1016
finish:
1017 1018 1019
	*d = 0; /* the final zero */
	++d;
	return d - dst;
1020
}
1021

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
static void rnd_noerror(void *data, uint size)
{
	int ret = gnutls_rnd(GNUTLS_RND_NONCE, data, size);
	if (ret) {
		kr_log_error("gnutls_rnd(): %s\n", gnutls_strerror(ret));
		abort();
	}
}
void kr_rnd_buffered(void *data, uint size)
{
	/* static circular buffer, from index _begin (inclusive) to _end (exclusive) */
	static uint8_t buf[512/8]; /* gnutls_rnd() works on blocks of 512 bits (chacha) */
	static uint buf_begin = sizeof(buf);

	if (unlikely(size > sizeof(buf))) {
		rnd_noerror(data, size);
		return;
	}
	/* Start with contiguous chunk, possibly until the end of buffer. */
	const uint size1 = MIN(size, sizeof(buf) - buf_begin);
	uint8_t *d = data;
	memcpy(d, buf + buf_begin, size1);
	if (size1 == size) {
		buf_begin += size1;
		return;
	}
	d += size1;
	size -= size1;
	/* Refill the whole buffer, and finish by another contiguous chunk. */
	rnd_noerror(buf, sizeof(buf));
	memcpy(d, buf, size);
	buf_begin = size;
}

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
void kr_rrset_init(knot_rrset_t *rrset, knot_dname_t *owner,
			uint16_t type, uint16_t rclass, uint32_t ttl)
{
	assert(rrset);
	knot_rrset_init(rrset, owner, type, rclass, ttl);
}
uint16_t kr_pkt_qclass(const knot_pkt_t *pkt)
{
	return knot_pkt_qclass(pkt);
}
uint16_t kr_pkt_qtype(const knot_pkt_t *pkt)
{
	return knot_pkt_qtype(pkt);
}
1070
uint32_t kr_rrsig_sig_inception(const knot_rdata_t *rdata)
1071
{
1072
	return knot_rrsig_sig_inception(rdata);
1073
}
1074
uint32_t kr_rrsig_sig_expiration(const knot_rdata_t *rdata)
1075
{
1076
	return knot_rrsig_sig_expiration(rdata);
1077
}
1078 1079 1080 1081
uint16_t kr_rrsig_type_covered(const knot_rdata_t *rdata)
{
	return knot_rrsig_type_covered(rdata);
}
1082