Commit bf139664 authored by Ondřej Zajíček's avatar Ondřej Zajíček

Initial BFD commit, work in progress.

parent bff9ce51
#define BUFFER(type) struct { type *data; uint used, size; }
#define BUFFER_SIZE(v) ((v).size * sizeof(* (v).data))
#define BUFFER_INIT(v,pool,isize) \
({ \
(v).used = 0; \
(v).size = (isize); \
(v).data = mb_alloc(pool, BUFFER_SIZE(v)); \
})
#define BUFFER_SET(v,nsize) \
({ \
(v).used = (nsize); \
if ((v).used > (v).size) \
buffer_realloc((void **) &((v).data), &((v).size), (v).used, sizeof(* (v).data)); \
})
#define BUFFER_INC(v,step) \
({ \
uint _o = (v).used; \
BUFFER_SET(v, (v).used + (step)); \
(v).data + _o; \
})
#define BUFFER_DEC(v,step) ({ (v).used -= (step); })
#define BUFFER_PUSH(v) (*BUFFER_INC(v,1))
#define BUFFER_POP(v) BUFFER_DEC(v,1)
#define BUFFER_FLUSH(v) ({ (v).used = 0; })
#define HASH(type) struct { type **data; uint used, size; }
#define HASH_TYPE(v) typeof(** (v).data)
#define HASH_SIZE(v) ((v).size * sizeof(* (v).data))
#define HASH_INIT(v,pool,isize) \
({ \
(v).used = 0; \
(v).size = (isize); \
(v).data = mb_allocz(pool, HASH_SIZE(v)); \
})
#define HASH_FIND(v,id,key) \
({ \
HASH_TYPE(v) *_n = (v).data[id##_FN(key, (v).size)]; \
while (_n && !id##_EQ(_n, key)) \
_n = _n->id##_NEXT; \
_n; \
})
#define HASH_INSERT(v,id,key,node) \
({ \
HASH_TYPE(v) **_nn = (v).data + id##_FN(key, (v).size); \
node->id##_NEXT = *_nn; \
*_nn = node; \
})
#define HASH_DELETE(v,id,key) \
({ \
HASH_TYPE(v) **_nn = (v).data + id##_FN(key, (v).size); \
while ((*_nn) && !id##_EQ(*_nn, key)) \
_nn = &((*_nn)->id##_NEXT); \
\
HASH_TYPE(v) *_n = *_nn; \
if (_n) \
*_nn = _n->id##_NEXT; \
_n; \
})
#define HASH_REMOVE(v,id,node) \
({ \
HASH_TYPE(v) **_nn = (v).data + id##_FN(key, (v).size); \
while ((*_nn) && (*_nn != (node))) \
_nn = &((*_nn)->id##_NEXT); \
\
HASH_TYPE(v) *_n = *_nn; \
if (_n) \
*_nn = _n->id##_NEXT; \
_n; \
})
#define HASH_WALK(v,next,n) \
do { \
HASH_TYPE(v) *n; \
uint _i; \
for (_i = 0; _i < ((v).size); _i++) \
for (n = (v).data[_i]; n; n = n->next)
#define HASH_WALK_END } while (0)
#define HASH_WALK_DELSAFE(v,next,n) \
do { \
HASH_TYPE(v) *n, *_next; \
uint _i; \
for (_i = 0; _i < ((v).size); _i++) \
for (n = (v).data[_i]; n && (_next = n->next, 1); n = _next)
#define HASH_WALK_DELSAFE_END } while (0)
/*
define HASH_REHASH(s) \
({ \
type *_n; \
uint _i; \
for (_i = 0; _i < (size_f); _i++) \
for (_n = (hash)[_i]; _n != NULL; _n =
*/
/*
* UCW Library -- Universal Heap Macros
*
* (c) 2001 Martin Mares <mj@ucw.cz>
* (c) 2005 Tomas Valla <tom@ucw.cz>
*
* This software may be freely distributed and used according to the terms
* of the GNU Lesser General Public License.
*/
/**
* [[intro]]
* Introduction
* ------------
*
* Binary heap is a simple data structure, which for example supports efficient insertions, deletions
* and access to the minimal inserted item. We define several macros for such operations.
* Note that because of simplicity of heaps, we have decided to define direct macros instead
* of a <<generic:,macro generator>> as for several other data structures in the Libucw.
*
* A heap is represented by a number of elements and by an array of values. Beware that we
* index this array from one, not from zero as do the standard C arrays.
*
* Most macros use these parameters:
*
* - @type - the type of elements
* - @num - a variable (signed or unsigned integer) with the number of elements
* - @heap - a C array of type @type; the heap is stored in `heap[1] .. heap[num]`; `heap[0]` is unused
* - @less - a callback to compare two element values; `less(x, y)` shall return a non-zero value iff @x is lower than @y
* - @swap - a callback to swap two array elements; `swap(heap, i, j, t)` must swap `heap[i]` with `heap[j]` with possible help of temporary variable @t (type @type).
*
* A valid heap must follow these rules:
*
* - `num >= 0`
* - `heap[i] >= heap[i / 2]` for each `i` in `[2, num]`
*
* The first element `heap[1]` is always lower or equal to all other elements.
*
* [[macros]]
* Macros
* ------
*/
/* For internal usage. */
#define HEAP_BUBBLE_DOWN_J(heap,num,less,swap) \
for (;;) \
{ \
_l = 2*_j; \
if (_l > num) \
break; \
if (less(heap[_j],heap[_l]) && (_l == num || less(heap[_j],heap[_l+1]))) \
break; \
if (_l != num && less(heap[_l+1],heap[_l])) \
_l++; \
swap(heap,_j,_l,x); \
_j = _l; \
}
/* For internal usage. */
#define HEAP_BUBBLE_UP_J(heap,num,less,swap) \
while (_j > 1) \
{ \
_u = _j/2; \
if (less(heap[_u], heap[_j])) \
break; \
swap(heap,_u,_j,x); \
_j = _u; \
}
/**
* Shuffle the unordered array @heap of @num elements to become a valid heap. The time complexity is linear.
**/
#define HEAP_INIT(heap,num,type,less,swap) \
do { \
uns _i = num; \
uns _j, _l; \
type x; \
while (_i >= 1) \
{ \
_j = _i; \
HEAP_BUBBLE_DOWN_J(heap,num,less,swap) \
_i--; \
} \
} while(0)
/**
* Delete the minimum element `heap[1]` in `O(log(n))` time.
* The removed value is moved just after the resulting heap (`heap[num + 1]`).
**/
#define HEAP_DELMIN(heap,num,type,less,swap) \
do { \
uns _j, _l; \
type x; \
swap(heap,1,num,x); \
num--; \
_j = 1; \
HEAP_BUBBLE_DOWN_J(heap,num,less,swap); \
} while(0)
/**
* Insert `heap[num]` in `O(log(n))` time. The value of @num must be increased before.
**/
#define HEAP_INSERT(heap,num,type,less,swap) \
do { \
uns _j, _u; \
type x; \
_j = num; \
HEAP_BUBBLE_UP_J(heap,num,less,swap); \
} while(0)
/**
* If you need to increase the value of `heap[pos]`, just do it and then call this macro to rebuild the heap.
* Only `heap[pos]` can be changed, the rest of the array must form a valid heap.
* The time complexity is `O(log(n))`.
**/
#define HEAP_INCREASE(heap,num,type,less,swap,pos) \
do { \
uns _j, _l; \
type x; \
_j = pos; \
HEAP_BUBBLE_DOWN_J(heap,num,less,swap); \
} while(0)
/**
* If you need to decrease the value of `heap[pos]`, just do it and then call this macro to rebuild the heap.
* Only `heap[pos]` can be changed, the rest of the array must form a valid heap.
* The time complexity is `O(log(n))`.
**/
#define HEAP_DECREASE(heap,num,type,less,swap,pos) \
do { \
uns _j, _u; \
type x; \
_j = pos; \
HEAP_BUBBLE_UP_J(heap,num,less,swap); \
} while(0)
/**
* Delete `heap[pos]` in `O(log(n))` time.
**/
#define HEAP_DELETE(heap,num,type,less,swap,pos) \
do { \
uns _j, _l, _u; \
type x; \
_j = pos; \
swap(heap,_j,num,x); \
num--; \
if (less(heap[_j], heap[num+1])) \
HEAP_BUBBLE_UP_J(heap,num,less,swap) \
else \
HEAP_BUBBLE_DOWN_J(heap,num,less,swap); \
} while(0)
/**
* Default swapping macro.
**/
#define HEAP_SWAP(heap,a,b,t) (t=heap[a], heap[a]=heap[b], heap[b]=t)
......@@ -100,6 +100,27 @@ rem_node(node *n)
x->prev = z;
}
/**
* replace_node - replace a node in a list with another one
* @old: node to be removed
* @new: node to be inserted
*
* Replaces node @old in the list it's linked in with node @new. Node
* @old may be a copy of the original node, which is not accessed
* through the list. The function could be called with @old == @new,
* which just fixes neighbors' pointers in the case that the node
* was reallocated.
*/
LIST_INLINE void
replace_node(node *old, node *new)
{
old->next->prev = new;
old->prev->next = new;
new->prev = old->prev;
new->next = old->next;
}
/**
* init_list - create an empty list
* @l: list
......
......@@ -366,21 +366,21 @@ mb_allocz(pool *p, unsigned size)
/**
* mb_realloc - reallocate a memory block
* @p: pool
* @m: memory block
* @size: new size of the block
*
* mb_realloc() changes the size of the memory block @m to a given size.
* The contents will be unchanged to the minimum of the old and new sizes;
* newly allocated memory will be uninitialized. If @m is NULL, the call
* is equivalent to mb_alloc(@p, @size).
* newly allocated memory will be uninitialized. Contrary to realloc()
* behavior, @m must be non-NULL, because the resource pool is inherited
* from it.
*
* Like mb_alloc(), mb_realloc() also returns a pointer to the memory
* chunk , not to the resource, hence you have to free it using
* chunk, not to the resource, hence you have to free it using
* mb_free(), not rfree().
*/
void *
mb_realloc(pool *p, void *m, unsigned size)
mb_realloc(void *m, unsigned size)
{
struct mblock *ob = NULL;
......@@ -392,9 +392,7 @@ mb_realloc(pool *p, void *m, unsigned size)
}
struct mblock *b = xrealloc(ob, sizeof(struct mblock) + size);
b->r.class = &mb_class;
add_tail(&p->inside, &b->r.n);
replace_node(&b->r.n, &b->r.n);
b->size = size;
return b->data;
}
......@@ -413,3 +411,18 @@ mb_free(void *m)
rfree(b);
}
#define STEP_UP(x) ((x) + (x)/2 + 4)
void
buffer_realloc(void **buf, unsigned *size, unsigned need, unsigned item_size)
{
unsigned nsize = MIN(*size, need);
while (nsize < need)
nsize = STEP_UP(nsize);
*buf = mb_realloc(*buf, nsize*isize);
*size = nsize;
}
......@@ -44,6 +44,7 @@ typedef struct birdsock {
/* laddr and lifindex are valid only if SKF_LADDR_RX flag is set to request it */
int fd; /* System-dependent data */
int index; /* Index in poll buffer */
node n;
void *rbuf_alloc, *tbuf_alloc;
char *password; /* Password for MD5 authentication */
......@@ -91,6 +92,7 @@ extern int sk_priority_control; /* Suggested priority for control traffic, shoul
#define SKF_LADDR_TX 4 /* Allow to specify local address for TX packets */
#define SKF_TTL_RX 8 /* Report TTL / Hop Limit for RX packets */
#define SKF_THREAD 0x100 /* Socked used in thread, Do not add to main loop */
/*
* Socket types SA SP DA DP IF TTL SendTo (?=may, -=must not, *=must)
......
H Protocols
C bfd
C bgp
C ospf
C pipe
......
source=bfd.c
root-rel=../../
dir-name=proto/bfd
include ../../Rules
This diff is collapsed.
#ifndef _BIRD_BFD_H_
#define _BIRD_BFD_H_
#define BFD_CONTROL_PORT 3784
#define BFD_ECHO_PORT 3785
#define BFD_MULTI_CTL_PORT 4784
#define BFD_DEFAULT_MIN_RX_INT (10 MS)
#define BFD_DEFAULT_MIN_TX_INT (100 MS)
#define BFD_DEFAULT_IDLE_TX_INT (1 S)
#define BFD_DEFAULT_MULTIPLIER 5
struct bfd_config
{
struct proto_config c;
list neighbors; /* List of struct bfd_neighbor */
};
struct bfd_session_config
{
u32 min_rx_int;
u32 min_tx_int;
u32 idle_tx_int;
u8 multiplier;
u8 multihop;
u8 passive;
};
struct bfd_neighbor
{
node n;
ip_addr addr;
ip_addr local;
struct iface *iface;
struct bfd_session_config *opts;
struct bfd_session *session;
};
struct bfd_proto
{
struct proto p;
slab *session_slab;
HASH(struct bfd_session) session_hash_id;
HASH(struct bfd_session) session_hash_ip;
list sockets;
};
struct bfd_socket
{
node n;
sock *sk;
u32 uc;
};
struct bfd_session
{
node n;
struct bfd_session *next_id; /* Next in bfd.session_hash_id */
struct bfd_session *next_ip; /* Next in bfd.session_hash_ip */
u8 opened;
u8 poll_active;
u8 poll_scheduled;
u8 loc_state;
u8 rem_state;
u8 loc_diag;
u32 loc_id; /* Local session ID (local discriminator) */
u32 rem_id; /* Remote session ID (remote discriminator) */
u32 des_min_tx_int; /* Desired min rx interval, local option */
u32 des_min_tx_new; /* Used for des_min_tx_int change */
u32 req_min_rx_int; /* Required min tx interval, local option */
u32 req_min_rx_new; /* Used for req_min_rx_int change */
u32 rem_min_tx_int; /* Last received des_min_tx_int */
u32 rem_min_rx_int; /* Last received req_min_rx_int */
u8 demand_mode; /* Currently unused */
u8 rem_demand_mode;
u8 detect_mult; /* Announced detect_mult, local option */
u8 rem_detect_mult; /* Last received detect_mult */
xxx_time last_tx; /* Time of last sent periodic control packet */
xxx_time last_rx; /* Time of last received valid control packet */
timer2 *tx_timer; /* Periodic control packet timer */
timer2 *hold_timer; /* Timer for session down detection time */
};
#define BFD_STATE_ADMIN_DOWN 0
#define BFD_STATE_DOWN 1
#define BFD_STATE_INIT 2
#define BFD_STATE_UP 3
#define BFD_DIAG_NOTHING 0
#define BFD_DIAG_TIMEOUT 1
#define BFD_DIAG_ECHO_FAILED 2
#define BFD_DIAG_NEIGHBOR_DOWN 3
#define BFD_DIAG_FWD_RESET 4
#define BFD_DIAG_PATH_DOWN 5
#define BFD_DIAG_C_PATH_DOWN 6
#define BFD_DIAG_ADMIN_DOWN 7
#define BFD_DIAG_RC_PATH_DOWN 8
#define BFD_POLL_TX 1
#define BFD_POLL_RX 2
#endif _BIRD_BFD_H_
/*
* BIRD -- Router Advertisement Configuration
*
*
* Can be freely distributed and used under the terms of the GNU GPL.
*/
CF_HDR
#include "proto/bfd/bfd.h"
CF_DEFINES
#define BFD_CFG ((struct bfd_config *) this_proto)
#define BFD_SESSION this_bfd_session
#define BFD_NEIGHBOR this_bfd_neighbor
static struct bfd_session_config *this_bfd_session;
static struct bfd_neighbor *this_bfd_neighbor;
CF_DECLS
CF_KEYWORDS(BFD, MIN, IDLE, RX, TX, INTERVAL, MULTIPLIER, MULTIHOP, PASSIVE,
NEIGHBOR)
%type <iface> bfd_neigh_iface
%type <a> bfd_neigh_local
CF_GRAMMAR
CF_ADDTO(proto, bfd_proto)
bfd_proto_start: proto_start BFD
{
this_proto = proto_config_new(&proto_bfd, sizeof(struct bfd_config), $1);
init_list(&BFD_CFG->neighbors);
};
bfd_proto_item:
proto_item
| bfd_neighbor
;
bfd_proto_opts:
/* empty */
| bfd_proto_opts bfd_proto_item ';'
;
bfd_proto:
bfd_proto_start proto_name '{' bfd_proto_opts '}';
bfd_session_start:
{
this_bfd_session = cfg_allocz(sizeof(struct bfd_session_config));
BFD_SESSION->min_rx_int = BFD_DEFAULT_MIN_RX_INT;
BFD_SESSION->min_tx_int = BFD_DEFAULT_MIN_TX_INT;
BFD_SESSION->idle_tx_int = BFD_DEFAULT_IDLE_TX_INT;
BFD_SESSION->multiplier = BFD_DEFAULT_MULTIPLIER;
};
bfd_session_item:
INTERVAL expr_us { BFD_SESSION->min_rx_int = BFD_SESSION->min_tx_int = $2; }
| MIN RX INTERVAL expr_us { BFD_SESSION->min_rx_int = $4; }
| MIN TX INTERVAL expr_us { BFD_SESSION->min_tx_int = $4; }
| IDLE TX INTERVAL expr_us { BFD_SESSION->idle_tx_int = $4; }
| MULTIPLIER expr { BFD_SESSION->multiplier = $2; }
| MULTIHOP bool { BFD_SESSION->multihop = $2; }
| PASSIVE bool { BFD_SESSION->passive = $2; }
;
bfd_session_opts:
/* empty */
| bfd_session_opts bfd_session_item ';'
;
bfd_session_opt_list:
/* empty */
| '{' bfd_session_opts '}'
;
bfd_session:
bfd_session_start bfd_session_opt_list;
bfd_neigh_iface:
/* empty */ { $$ = NULL; }
| '%' SYM { $$ = if_get_by_name($2->name); }
| DEV TEXT { $$ = if_get_by_name($2); }
;
bfd_neigh_local:
/* empty */ { $$ = IPA_NONE; }
| LOCAL ipa { $$ = $2; }
;
bfd_neighbor: NEIGHBOR ipa bfd_neigh_iface bfd_neigh_local bfd_session
{
this_bfd_neighbor = cfg_allocz(sizeof(struct bfd_neighbor));
add_tail(&BFD_CFG->neighbors, NODE this_bfd_neighbor);
BFD_NEIGHBOR->addr = $2;
BFD_NEIGHBOR->local = $4;
BFD_NEIGHBOR->iface = $3;
BFD_NEIGHBOR->opts = BFD_SESSION;
};
CF_CODE
CF_END
This diff is collapsed.
typedef s64 xxx_time;
typedef struct timer
{
resource r;
void (*hook)(struct timer2 *);
void *data;
xxx_time expires; /* 0=inactive */
unsigned randomize; /* Amount of randomization */
unsigned recurrent; /* Timer recurrence */
int index;
} timer;
void ev2_schedule(event *e);
timer2 *tm2_new(pool *p);
void tm2_start(timer2 *t, xxx_time after);
void tm2_stop(timer2 *t);
static inline xxx_time
tm2_remains(timer2 *t)
{
return (t->expires > xxxnow) ? t->expires - xxxnow : 0;
}
static inline void
tm2_start_max(timer2 *t, xxx_time after)
{
xxx_time rem = tm2_remains(t);
tm2_start(t, MAX(rem, after));
}
static inline timer2 *
tm2_new_set(pool *p, void (*hook)(struct timer2 *), void *data, uint rec, uint rand)
{
timer2 *t = tm2_new(p);
t->hook = hook;
t->data = data;
t->recurrent = rec;
t->randomize = rand;
return t;
}
void sk_start(sock *s);
void sk_stop(sock *s);
struct birdloop *birdloop_new(pool *p);
void birdloop_enter(struct birdloop *loop);
void birdloop_leave(struct birdloop *loop);
void birdloop_main(struct birdloop *loop);
#define BFD_FLAG_POLL (1 << 5)
#define BFD_FLAG_FINAL (1 << 4)
#define BFD_FLAG_CPI (1 << 3)
#define BFD_FLAG_AP (1 << 2)
#define BFD_FLAG_DEMAND (1 << 1)
#define BFD_FLAG_MULTIPOINT (1 << 0)
struct bfd_ctl_packet
{
u8 vdiag; /* version and diagnostic */
u8 flags; /* state and flags */
u8 detect_mult;
u8 length;
u32 snd_id; /* sender ID, aka 'my discriminator' */
u32 rcv_id; /* receiver ID, aka 'your discriminator' */
u32 des_min_tx_int;
u32 req_min_rx_int;
u32 req_min_echo_rx_int;
};
static inline void bfd_pack_vdiag(u8 version, u8 diag)
{ return (version << 5) | diag; }
static inline void bfd_pack_flags(u8 state, u8 flags)
{ return (state << 6) | diag; }
static inline u8 bfd_pkt_get_version(struct bfd_ctl_packet *pkt)
{ return pkt->vdiag >> 5; }
static inline u8 bfd_pkt_get_diag(struct bfd_ctl_packet *pkt)
{ return pkt->vdiag && 0x1f; }
static inline u8 bfd_pkt_get_state(struct bfd_ctl_packet *pkt)
{ return pkt->flags >> 6; }
static inline void bfd_pkt_set_state(struct bfd_ctl_packet *pkt, u8 val)
{ pkt->flags = val << 6; }
void
bfd_send_ctl(struct bfd_proto *p, struct bfd_session *s, int final)
{
sock *sk = p->skX;
struct bfd_ctl_packet *pkt = (struct ospf_packet *) sk->tbuf;
pkt->vdiag = bfd_pack_vdiag(1, s->loc_diag);
pkt->flags = bfd_pack_flags(s->loc_state, 0);
pkt->detect_mult = s->detect_mult;
pkt->length = 24;
pkt->snd_id = htonl(s->loc_id);
pkt->rcv_id = htonl(s->rem_id);
pkt->des_min_tx_int = htonl(s->des_min_tx_int);
pkt->req_min_rx_int = htonl(s->req_min_rx_int);
pkt->req_min_echo_rx_int = 0;
if (final)
pkt->flags |= BFD_FLAG_FINAL;
else if (s->poll_active)
pkt->flags |= BFD_FLAG_POLL;
// XXX
sk_send_to(sk, len, dst, 0);
}
int
bfd_ctl_rx_hook(sock *sk, int len)
{
struct bfd_proto *p = sk->data;
struct bfd_ctl_packet *pkt =sk->rbuf;
if (len < BFD_BASE_LEN)
DROP("too short", len);
u8 version = bfd_pkt_get_version(pkt);
if (version != 1)
DROP("version mismatch", version);
if ((pkt->length < BFD_BASE_LEN) || (pkt->length > len))
DROP("length mismatch", pkt->length);
if (pkt->detect_mult == 0)