rt-fib.c 18.3 KB
Newer Older
1 2 3
/*
 *	BIRD -- Forwarding Information Base -- Data Structures
 *
4
 *	(c) 1998--2000 Martin Mares <mj@ucw.cz>
5 6 7 8
 *
 *	Can be freely distributed and used under the terms of the GNU GPL.
 */

Martin Mareš's avatar
Martin Mareš committed
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/**
 * DOC: Forwarding Information Base
 *
 * FIB is a data structure designed for storage of routes indexed by their
 * network prefixes. It supports insertion, deletion, searching by prefix,
 * `routing' (in CIDR sense, that is searching for a longest prefix matching
 * a given IP address) and (which makes the structure very tricky to implement)
 * asynchronous reading, that is enumerating the contents of a FIB while other
 * modules add, modify or remove entries.
 *
 * Internally, each FIB is represented as a collection of nodes of type &fib_node
 * indexed using a sophisticated hashing mechanism.
 * We use two-stage hashing where we calculate a 16-bit primary hash key independent
 * on hash table size and then we just divide the primary keys modulo table size
 * to get a real hash key used for determining the bucket containing the node.
Martin Mareš's avatar
Martin Mareš committed
24
 * The lists of nodes in each bucket are sorted according to the primary hash
Martin Mareš's avatar
Martin Mareš committed
25 26 27 28 29 30 31 32 33 34
 * key, hence if we keep the total number of buckets to be a power of two,
 * re-hashing of the structure keeps the relative order of the nodes.
 *
 * To get the asynchronous reading consistent over node deletions, we need to
 * keep a list of readers for each node. When a node gets deleted, its readers
 * are automatically moved to the next node in the table.
 *
 * Basic FIB operations are performed by functions defined by this module,
 * enumerating of FIB contents is accomplished by using the FIB_WALK() macro
 * or FIB_ITERATE_START() if you want to do it asynchronously.
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 *
 * For simple iteration just place the body of the loop between FIB_WALK() and
 * FIB_WALK_END(). You can't modify the FIB during the iteration (you can modify
 * data in the node, but not add or remove nodes).
 *
 * If you need more freedom, you can use the FIB_ITERATE_*() group of macros.
 * First, you initialize an iterator with FIB_ITERATE_INIT(). Then you can put
 * the loop body in between FIB_ITERATE_START() and FIB_ITERATE_END(). In
 * addition, the iteration can be suspended by calling FIB_ITERATE_PUT().
 * This'll link the iterator inside the FIB. While suspended, you may modify the
 * FIB, exit the current function, etc. To resume the iteration, enter the loop
 * again. You can use FIB_ITERATE_UNLINK() to unlink the iterator (while
 * iteration is suspended) in cases like premature end of FIB iteration.
 *
 * Note that the iterator must not be destroyed when the iteration is suspended,
 * the FIB would then contain a pointer to invalid memory. Therefore, after each
 * FIB_ITERATE_INIT() or FIB_ITERATE_PUT() there must be either
 * FIB_ITERATE_START() or FIB_ITERATE_UNLINK() before the iterator is destroyed.
Martin Mareš's avatar
Martin Mareš committed
53 54
 */

55
#undef LOCAL_DEBUG
56 57 58

#include "nest/bird.h"
#include "nest/route.h"
59
#include "lib/string.h"
60

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * The FIB rehash values are maintaining FIB count between N/5 and 2N. What
 * does it mean?
 *
 * +------------+--------+---------+-----------+----------+-----------+
 * | Table size | Memory | Min cnt | net + rte |  Max cnt | net + rte |
 * +------------+--------+---------+-----------+----------+-----------+
 * |         1k |     8k |    0    |      0    |       2k |    192  k |
 * |         2k |    16k |  409    |     38.3k |       4k |    384  k |
 * |         4k |    32k |  819    |     76.8k |       8k |    768  k |
 * |         8k |    64k |    1.6k |    153.6k |      16k |      1.5M |
 * |        16k |   128k |    3.2k |    307.1k |      32k |      3  M |
 * |        32k |   256k |    6.4k |    614.3k |      64k |      6  M |
 * |        64k |   512k |   12.8k |      1.2M |     128k |     12  M |
 * |       128k |  1024k |   25.6k |      2.4M |     256k |     24  M |
 * |       256k |     2M |   51.2k |      4.8M |     512k |     48  M |
 * |       512k |     4M |  102.4k |      9.6M |       1M |     96  M |
 * |         1M |     8M |  204.8k |     19.2M |       2M |    192  M |
 * |         2M |    16M |  409.6k |     38.4M |       4M |    384  M |
 * |         4M |    32M |  819.2k |     76.8M |       8M |    768  M |
 * |         8M |    64M |    1.6M |    153.6M | infinity |  infinity |
 * +------------+--------+---------+-----------+----------+-----------+
 *
 * Table size	shows how many slots are in FIB table.
 * Memory	shows how much memory is eaten by FIB table.
 * Min cnt	minimal number of nets in table of given size
 * Max cnt	maximal number of nets in table of given size
 * net + rte	memory eaten by 1 net and one route in it for min cnt and max cnt
 *
 * Example: If we have 750,000 network entries in a table:
 * * the table size may be 512k if we have never had more
 * * the table size may be 1M or 2M if we at least happened to have more
 * * 256k is too small, 8M is too big
 *
 * When growing, rehash is done on demand so we do it on every power of 2.
 * When shrinking, rehash is done on delete which is done (in global tables)
 * in a scheduled event. Rehashing down 2 steps.
 *
 */


102
#define HASH_DEF_ORDER 10
103 104
#define HASH_HI_MARK * 2
#define HASH_HI_STEP 1
105
#define HASH_HI_MAX 24
106
#define HASH_LO_MARK / 5
107 108
#define HASH_LO_STEP 2
#define HASH_LO_MIN 10
109

110

111 112 113
static void
fib_ht_alloc(struct fib *f)
{
114
  f->hash_size = 1 << f->hash_order;
115
  f->hash_shift = 32 - f->hash_order;
116 117 118 119 120
  if (f->hash_order > HASH_HI_MAX - HASH_HI_STEP)
    f->entries_max = ~0;
  else
    f->entries_max = f->hash_size HASH_HI_MARK;
  if (f->hash_order < HASH_LO_MIN + HASH_LO_STEP)
121
    f->entries_min = 0;
122 123 124 125
  else
    f->entries_min = f->hash_size HASH_LO_MARK;
  DBG("Allocating FIB hash of order %d: %d entries, %d low, %d high\n",
      f->hash_order, f->hash_size, f->entries_min, f->entries_max);
126 127 128 129 130 131 132 133 134 135
  f->hash_table = mb_alloc(f->fib_pool, f->hash_size * sizeof(struct fib_node *));
}

static inline void
fib_ht_free(struct fib_node **h)
{
  mb_free(h);
}


136
static inline u32 fib_hash(struct fib *f, const net_addr *a);
Pavel Machek's avatar
Pavel Machek committed
137

Martin Mareš's avatar
Martin Mareš committed
138 139 140 141 142 143 144 145 146 147 148 149
/**
 * fib_init - initialize a new FIB
 * @f: the FIB to be initialized (the structure itself being allocated by the caller)
 * @p: pool to allocate the nodes in
 * @node_size: node size to be used (each node consists of a standard header &fib_node
 * followed by user data)
 * @hash_order: initial hash order (a binary logarithm of hash table size), 0 to use default order
 * (recommended)
 * @init: pointer a function to be called to initialize a newly created node
 *
 * This function initializes a newly allocated FIB and prepares it for use.
 */
150
void
151
fib_init(struct fib *f, pool *p, uint addr_type, uint node_size, uint node_offset, uint hash_order, fib_init_fn init)
152
{
153 154
  uint addr_length = net_addr_length[addr_type];

155 156
  if (!hash_order)
    hash_order = HASH_DEF_ORDER;
157
  f->fib_pool = p;
158 159 160 161
  f->fib_slab = addr_length ? sl_new(p, node_size + addr_length) : NULL;
  f->addr_type = addr_type;
  f->node_size = node_size;
  f->node_offset = node_offset;
162
  f->hash_order = hash_order;
163
  fib_ht_alloc(f);
164
  bzero(f->hash_table, f->hash_size * sizeof(struct fib_node *));
165 166
  f->entries = 0;
  f->entries_min = 0;
167
  f->init = init;
168 169 170
}

static void
171
fib_rehash(struct fib *f, int step)
172
{
173
  unsigned old, new, oldn, newn, ni, nh;
174 175
  struct fib_node **n, *e, *x, **t, **m, **h;

176 177 178
  old = f->hash_order;
  oldn = f->hash_size;
  new = old + step;
179
  m = h = f->hash_table;
180 181
  DBG("Re-hashing FIB from order %d to %d\n", old, new);
  f->hash_order = new;
182
  fib_ht_alloc(f);
183 184 185 186
  t = n = f->hash_table;
  newn = f->hash_size;
  ni = 0;

187
  while (oldn--)
188 189 190 191 192
    {
      x = *h++;
      while (e = x)
	{
	  x = e->next;
193
	  nh = fib_hash(f, e->addr);
194 195 196 197 198 199
	  while (nh > ni)
	    {
	      *t = NULL;
	      ni++;
	      t = ++n;
	    }
200
	  *t = e;
201
	  t = &e->next;
202 203
	}
    }
204 205 206 207 208 209
  while (ni < newn)
    {
      *t = NULL;
      ni++;
      t = ++n;
    }
210 211 212
  fib_ht_free(m);
}

213 214
#define CAST(t) (const net_addr_##t *)
#define CAST2(t) (net_addr_##t *)
215 216 217 218 219 220 221 222

#define FIB_HASH(f,a,t) (net_hash_##t(CAST(t) a) >> f->hash_shift)

#define FIB_FIND(f,a,t)							\
  ({									\
    struct fib_node *e = f->hash_table[FIB_HASH(f, a, t)];		\
    while (e && !net_equal_##t(CAST(t) e->addr, CAST(t) a))		\
      e = e->next;							\
223
    fib_node_to_user(f, e);						\
224 225 226 227 228 229 230 231 232 233 234
  })

#define FIB_INSERT(f,a,e,t)						\
  ({									\
  u32 h = net_hash_##t(CAST(t) a);					\
  struct fib_node **ee = f->hash_table + (h >> f->hash_shift);		\
  struct fib_node *g;							\
									\
  while ((g = *ee) && (net_hash_##t(CAST(t) g->addr) < h))		\
    ee = &g->next;							\
									\
235
  net_copy_##t(CAST2(t) e->addr, CAST(t) a);				\
236 237 238 239 240
  e->next = *ee;							\
  *ee = e;								\
  })


241
static inline u32
242
fib_hash(struct fib *f, const net_addr *a)
243
{
244 245
  /* Same as FIB_HASH() */
  return net_hash(a) >> f->hash_shift;
246 247
}

248 249 250 251 252 253 254 255 256
void *
fib_get_chain(struct fib *f, const net_addr *a)
{
  ASSERT(f->addr_type == a->type);

  struct fib_node *e = f->hash_table[fib_hash(f, a)];
  return e;
}

257 258 259 260 261 262 263 264
/**
 * fib_find - search for FIB node by prefix
 * @f: FIB to search in
 * @n: network address
 *
 * Search for a FIB node corresponding to the given prefix, return
 * a pointer to it or %NULL if no such node exists.
 */
265
void *
266
fib_find(struct fib *f, const net_addr *a)
267 268 269 270 271 272 273 274 275
{
  ASSERT(f->addr_type == a->type);

  switch (f->addr_type)
  {
  case NET_IP4: return FIB_FIND(f, a, ip4);
  case NET_IP6: return FIB_FIND(f, a, ip6);
  case NET_VPN4: return FIB_FIND(f, a, vpn4);
  case NET_VPN6: return FIB_FIND(f, a, vpn6);
276 277
  case NET_ROA4: return FIB_FIND(f, a, roa4);
  case NET_ROA6: return FIB_FIND(f, a, roa6);
278 279
  case NET_FLOW4: return FIB_FIND(f, a, flow4);
  case NET_FLOW6: return FIB_FIND(f, a, flow6);
280
  case NET_IP6_SADR: return FIB_FIND(f, a, ip6_sadr);
281
  case NET_MPLS: return FIB_FIND(f, a, mpls);
282 283 284 285 286
  default: bug("invalid type");
  }
}

static void
287
fib_insert(struct fib *f, const net_addr *a, struct fib_node *e)
288
{
289 290
  ASSERT(f->addr_type == a->type);

291 292 293 294 295 296
  switch (f->addr_type)
  {
  case NET_IP4: FIB_INSERT(f, a, e, ip4); return;
  case NET_IP6: FIB_INSERT(f, a, e, ip6); return;
  case NET_VPN4: FIB_INSERT(f, a, e, vpn4); return;
  case NET_VPN6: FIB_INSERT(f, a, e, vpn6); return;
297 298
  case NET_ROA4: FIB_INSERT(f, a, e, roa4); return;
  case NET_ROA6: FIB_INSERT(f, a, e, roa6); return;
299 300
  case NET_FLOW4: FIB_INSERT(f, a, e, flow4); return;
  case NET_FLOW6: FIB_INSERT(f, a, e, flow6); return;
301
  case NET_IP6_SADR: FIB_INSERT(f, a, e, ip6_sadr); return;
302
  case NET_MPLS: FIB_INSERT(f, a, e, mpls); return;
303 304 305 306 307
  default: bug("invalid type");
  }
}


Martin Mareš's avatar
Martin Mareš committed
308 309 310
/**
 * fib_get - find or create a FIB node
 * @f: FIB to work with
311
 * @n: network address
Martin Mareš's avatar
Martin Mareš committed
312 313 314 315
 *
 * Search for a FIB node corresponding to the given prefix and
 * return a pointer to it. If no such node exists, create it.
 */
316
void *
317
fib_get(struct fib *f, const net_addr *a)
318
{
319
  void *b = fib_find(f, a);
320 321
  if (b)
    return b;
322

323 324 325 326
  if (f->fib_slab)
    b = sl_alloc(f->fib_slab);
  else
    b = mb_alloc(f->fib_pool, f->node_size + a->length);
327

328
  struct fib_node *e = fib_user_to_node(f, b);
329 330 331
  e->readers = NULL;
  e->flags = 0;
  fib_insert(f, a, e);
332

333 334 335
  memset(b, 0, f->node_offset);
  if (f->init)
    f->init(b);
336

337
  if (f->entries++ > f->entries_max)
338
    fib_rehash(f, HASH_HI_STEP);
339

340
  return b;
341 342
}

343 344
static inline void *
fib_route_ip4(struct fib *f, net_addr_ip4 *n)
345
{
346
  void *r;
347

348
  while (!(r = fib_find(f, (net_addr *) n)) && (n->pxlen > 0))
349 350 351 352 353
  {
    n->pxlen--;
    ip4_clrbit(&n->prefix, n->pxlen);
  }

354
  return r;
355 356
}

357 358
static inline void *
fib_route_ip6(struct fib *f, net_addr_ip6 *n)
359
{
360
  void *r;
361

362
  while (!(r = fib_find(f, (net_addr *) n)) && (n->pxlen > 0))
363 364 365 366 367
  {
    n->pxlen--;
    ip6_clrbit(&n->prefix, n->pxlen);
  }

368
  return r;
369 370
}

Martin Mareš's avatar
Martin Mareš committed
371 372 373
/**
 * fib_route - CIDR routing lookup
 * @f: FIB to search in
374
 * @n: network address
Martin Mareš's avatar
Martin Mareš committed
375 376 377 378 379
 *
 * Search for a FIB node with longest prefix matching the given
 * network, that is a node which a CIDR router would use for routing
 * that network.
 */
380
void *
381
fib_route(struct fib *f, const net_addr *n)
382
{
383
  ASSERT(f->addr_type == n->type);
384

385 386 387
  net_addr *n0 = alloca(n->length);
  net_copy(n0, n);

388 389 390 391
  switch (n->type)
  {
  case NET_IP4:
  case NET_VPN4:
392
  case NET_ROA4:
393
  case NET_FLOW4:
394
    return fib_route_ip4(f, (net_addr_ip4 *) n0);
395 396 397

  case NET_IP6:
  case NET_VPN6:
398
  case NET_ROA6:
399
  case NET_FLOW6:
400
    return fib_route_ip6(f, (net_addr_ip6 *) n0);
401 402 403 404

  default:
    return NULL;
  }
405 406
}

407

408 409 410 411 412 413 414 415 416 417 418 419
static inline void
fib_merge_readers(struct fib_iterator *i, struct fib_node *to)
{
  if (to)
    {
      struct fib_iterator *j = to->readers;
      if (!j)
	{
	  /* Fast path */
	  to->readers = i;
	  i->prev = (struct fib_iterator *) to;
	}
420 421 422 423 424 425 426 427 428 429 430 431 432
      else
	{
	  /* Really merging */
	  while (j->next)
	    j = j->next;
	  j->next = i;
	  i->prev = j;
	}
      while (i && i->node)
	{
	  i->node = NULL;
	  i = i->next;
	}
433 434 435 436 437 438 439 440 441
    }
  else					/* No more nodes */
    while (i)
      {
	i->prev = NULL;
	i = i->next;
      }
}

Martin Mareš's avatar
Martin Mareš committed
442 443 444 445 446 447 448 449 450
/**
 * fib_delete - delete a FIB node
 * @f: FIB to delete from
 * @E: entry to delete
 *
 * This function removes the given entry from the FIB,
 * taking care of all the asynchronous readers by shifting
 * them to the next node in the canonical reading order.
 */
451 452 453
void
fib_delete(struct fib *f, void *E)
{
454 455
  struct fib_node *e = fib_user_to_node(f, E);
  uint h = fib_hash(f, e->addr);
456 457
  struct fib_node **ee = f->hash_table + h;
  struct fib_iterator *it;
458 459 460 461 462 463

  while (*ee)
    {
      if (*ee == e)
	{
	  *ee = e->next;
464 465 466 467 468 469 470 471 472 473 474 475 476
	  if (it = e->readers)
	    {
	      struct fib_node *l = e->next;
	      while (!l)
		{
		  h++;
		  if (h >= f->hash_size)
		    break;
		  else
		    l = f->hash_table[h];
		}
	      fib_merge_readers(it, l);
	    }
477 478 479 480 481 482

	  if (f->fib_slab)
	    sl_free(f->fib_slab, E);
	  else
	    mb_free(E);

483
	  if (f->entries-- < f->entries_min)
484
	    fib_rehash(f, -HASH_LO_STEP);
485 486 487 488
	  return;
	}
      ee = &((*ee)->next);
    }
489
  bug("fib_delete() called for invalid node");
490 491
}

Martin Mareš's avatar
Martin Mareš committed
492 493 494 495 496 497 498
/**
 * fib_free - delete a FIB
 * @f: FIB to be deleted
 *
 * This function deletes a FIB -- it frees all memory associated
 * with it and all its entries.
 */
499 500 501 502 503 504
void
fib_free(struct fib *f)
{
  fib_ht_free(f->hash_table);
  rfree(f->fib_slab);
}
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536

void
fit_init(struct fib_iterator *i, struct fib *f)
{
  unsigned h;
  struct fib_node *n;

  i->efef = 0xff;
  for(h=0; h<f->hash_size; h++)
    if (n = f->hash_table[h])
      {
	i->prev = (struct fib_iterator *) n;
	if (i->next = n->readers)
	  i->next->prev = i;
	n->readers = i;
	i->node = n;
	return;
      }
  /* The fib is empty, nothing to do */
  i->prev = i->next = NULL;
  i->node = NULL;
}

struct fib_node *
fit_get(struct fib *f, struct fib_iterator *i)
{
  struct fib_node *n;
  struct fib_iterator *j, *k;

  if (!i->prev)
    {
      /* We are at the end */
537
      i->hash = ~0 - 1;
538 539 540 541 542 543 544 545 546 547 548 549 550 551
      return NULL;
    }
  if (!(n = i->node))
    {
      /* No node info available, we are a victim of merging. Try harder. */
      j = i;
      while (j->efef == 0xff)
	j = j->prev;
      n = (struct fib_node *) j;
    }
  j = i->prev;
  if (k = i->next)
    k->prev = j;
  j->next = k;
552
  i->hash = fib_hash(f, n->addr);
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
  return n;
}

void
fit_put(struct fib_iterator *i, struct fib_node *n)
{
  struct fib_iterator *j;

  i->node = n;
  if (j = n->readers)
    j->prev = i;
  i->next = j;
  n->readers = i;
  i->prev = (struct fib_iterator *) n;
}

Ondřej Zajíček's avatar
Ondřej Zajíček committed
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
void
fit_put_next(struct fib *f, struct fib_iterator *i, struct fib_node *n, uint hpos)
{
  if (n = n->next)
    goto found;

  while (++hpos < f->hash_size)
    if (n = f->hash_table[hpos])
      goto found;

  /* We are at the end */
  i->prev = i->next = NULL;
  i->node = NULL;
  return;

found:
  fit_put(i, n);
}

588 589
#ifdef DEBUGGING

Martin Mareš's avatar
Martin Mareš committed
590 591 592 593 594
/**
 * fib_check - audit a FIB
 * @f: FIB to be checked
 *
 * This debugging function audits a FIB by checking its internal consistency.
Martin Mareš's avatar
Martin Mareš committed
595
 * Use when you suspect somebody of corrupting innocent data structures.
Martin Mareš's avatar
Martin Mareš committed
596
 */
597 598 599
void
fib_check(struct fib *f)
{
600
  uint i, ec, nulls;
601 602 603 604 605 606 607 608

  ec = 0;
  for(i=0; i<f->hash_size; i++)
    {
      struct fib_node *n;
      for(n=f->hash_table[i]; n; n=n->next)
	{
	  struct fib_iterator *j, *j0;
609 610
	  uint h0 = fib_hash(f, n->addr);
	  if (h0 != i)
611
	    bug("fib_check: mishashed %x->%x (order %d)", h0, i, f->hash_order);
612 613 614 615 616
	  j0 = (struct fib_iterator *) n;
	  nulls = 0;
	  for(j=n->readers; j; j=j->next)
	    {
	      if (j->prev != j0)
617
		bug("fib_check: iterator->prev mismatch");
618 619 620 621
	      j0 = j;
	      if (!j->node)
		nulls++;
	      else if (nulls)
622
		bug("fib_check: iterator nullified");
623
	      else if (j->node != n)
624
		bug("fib_check: iterator->node mismatch");
625 626 627 628 629
	    }
	  ec++;
	}
    }
  if (ec != f->entries)
630
    bug("fib_check: invalid entry count (%d != %d)", ec, f->entries);
631
  return;
632 633
}

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
/*
int
fib_histogram(struct fib *f)
{
  log(L_WARN "Histogram dump start %d %d", f->hash_size, f->entries);

  int i, j;
  struct fib_node *e;

  for (i = 0; i < f->hash_size; i++)
    {
      j = 0;
      for (e = f->hash_table[i]; e != NULL; e = e->next)
	j++;
      if (j > 0)
649
	log(L_WARN "Histogram line %d: %d", i, j);
650 651 652 653 654 655
    }

  log(L_WARN "Histogram dump end");
}
*/

656 657 658 659 660 661 662 663 664 665
#endif

#ifdef TEST

#include "lib/resource.h"

struct fib f;

void dump(char *m)
{
Pavel Tvrdík's avatar
Pavel Tvrdík committed
666
  uint i;
667 668 669 670 671 672 673 674

  debug("%s ... order=%d, size=%d, entries=%d\n", m, f.hash_order, f.hash_size, f.hash_size);
  for(i=0; i<f.hash_size; i++)
    {
      struct fib_node *n;
      struct fib_iterator *j;
      for(n=f.hash_table[i]; n; n=n->next)
	{
675
	  debug("%04x %08x %p %N", i, ipa_hash(n->prefix), n, n->addr);
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
	  for(j=n->readers; j; j=j->next)
	    debug(" %p[%p]", j, j->node);
	  debug("\n");
	}
    }
  fib_check(&f);
  debug("-----\n");
}

void init(struct fib_node *n)
{
}

int main(void)
{
  struct fib_node *n;
  struct fib_iterator i, j;
  ip_addr a;
  int c;

  log_init_debug(NULL);
  resource_init();
  fib_init(&f, &root_pool, sizeof(struct fib_node), 4, init);
  dump("init");

  a = ipa_from_u32(0x01020304); n = fib_get(&f, &a, 32);
  a = ipa_from_u32(0x02030405); n = fib_get(&f, &a, 32);
  a = ipa_from_u32(0x03040506); n = fib_get(&f, &a, 32);
  a = ipa_from_u32(0x00000000); n = fib_get(&f, &a, 32);
  a = ipa_from_u32(0x00000c01); n = fib_get(&f, &a, 32);
  a = ipa_from_u32(0xffffffff); n = fib_get(&f, &a, 32);
  dump("fill");

  fit_init(&i, &f);
  dump("iter init");

  fib_rehash(&f, 1);
  dump("rehash up");

  fib_rehash(&f, -1);
  dump("rehash down");

next:
  c = 0;
  FIB_ITERATE_START(&f, &i, z)
    {
      if (c)
	{
	  FIB_ITERATE_PUT(&i, z);
	  dump("iter");
	  goto next;
	}
      c = 1;
      debug("got %p\n", z);
    }
Pavel Tvrdík's avatar
Pavel Tvrdík committed
731
  FIB_ITERATE_END(z);
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
  dump("iter end");

  fit_init(&i, &f);
  fit_init(&j, &f);
  dump("iter init 2");

  n = fit_get(&f, &i);
  dump("iter step 2");

  fit_put(&i, n->next);
  dump("iter step 3");

  a = ipa_from_u32(0xffffffff); n = fib_get(&f, &a, 32);
  fib_delete(&f, n);
  dump("iter step 3");

  return 0;
}

#endif