proto.c 45.7 KB
Newer Older
1 2 3
/*
 *	BIRD -- Protocols
 *
4
 *	(c) 1998--2000 Martin Mares <mj@ucw.cz>
5 6 7 8
 *
 *	Can be freely distributed and used under the terms of the GNU GPL.
 */

9
#undef LOCAL_DEBUG
10

11 12 13 14
#include "nest/bird.h"
#include "nest/protocol.h"
#include "lib/resource.h"
#include "lib/lists.h"
15
#include "lib/event.h"
16
#include "lib/timer.h"
17
#include "lib/string.h"
18
#include "conf/conf.h"
19 20
#include "nest/route.h"
#include "nest/iface.h"
21
#include "nest/cli.h"
22
#include "filter/filter.h"
23

24
pool *proto_pool;
25
list  proto_list;
26

27
static list protocol_list;
28
struct protocol *class_to_protocol[PROTOCOL__MAX];
29

30 31
#define PD(pr, msg, args...) do { if (pr->debug & D_STATES) { log(L_TRACE "%s: " msg, pr->name , ## args); } } while(0)

32
static timer *proto_shutdown_timer;
33 34 35 36 37 38 39 40 41
static timer *gr_wait_timer;

#define GRS_NONE	0
#define GRS_INIT	1
#define GRS_ACTIVE	2
#define GRS_DONE	3

static int graceful_restart_state;
static u32 graceful_restart_locks;
42 43

static char *p_states[] = { "DOWN", "START", "UP", "STOP" };
Ondřej Zajíček's avatar
Ondřej Zajíček committed
44
static char *c_states[] = { "DOWN", "START", "UP", "FLUSHING" };
45

46 47
extern struct protocol proto_unix_iface;

48
static void proto_shutdown_loop(timer *);
49
static void proto_rethink_goal(struct proto *p);
50
static char *proto_state_name(struct proto *p);
51
static void channel_verify_limits(struct channel *c);
52
static inline void channel_reset_limit(struct channel_limit *l);
53 54


55 56
static inline int proto_is_done(struct proto *p)
{ return (p->proto_state == PS_DOWN) && (p->active_channels == 0); }
57

58 59
static inline int channel_is_active(struct channel *c)
{ return (c->channel_state == CS_START) || (c->channel_state == CS_UP); }
60 61 62 63 64

static void
proto_log_state_change(struct proto *p)
{
  if (p->debug & D_STATES)
65 66 67
  {
    char *name = proto_state_name(p);
    if (name != p->last_state_name_announced)
68
    {
69 70
      p->last_state_name_announced = name;
      PD(p, "State changed to %s", proto_state_name(p));
71
    }
72
  }
73 74
  else
    p->last_state_name_announced = NULL;
75
}
76

77

78 79
struct channel_config *
proto_cf_find_channel(struct proto_config *pc, uint net_type)
80
{
81 82 83 84 85 86 87
  struct channel_config *cc;

  WALK_LIST(cc, pc->channels)
    if (cc->net_type == net_type)
      return cc;

  return NULL;
88 89
}

90 91 92 93 94 95 96 97 98
/**
 * proto_find_channel_by_table - find channel connected to a routing table
 * @p: protocol instance
 * @t: routing table
 *
 * Returns pointer to channel or NULL
 */
struct channel *
proto_find_channel_by_table(struct proto *p, struct rtable *t)
99
{
100
  struct channel *c;
101

102 103 104
  WALK_LIST(c, p->channels)
    if (c->table == t)
      return c;
105

106
  return NULL;
107 108
}

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
/**
 * proto_find_channel_by_name - find channel by its name
 * @p: protocol instance
 * @n: channel name
 *
 * Returns pointer to channel or NULL
 */
struct channel *
proto_find_channel_by_name(struct proto *p, const char *n)
{
  struct channel *c;

  WALK_LIST(c, p->channels)
    if (!strcmp(c->name, n))
      return c;

  return NULL;
}

128
/**
129
 * proto_add_channel - connect protocol to a routing table
130
 * @p: protocol instance
131
 * @cf: channel configuration
132
 *
133 134 135 136
 * This function creates a channel between the protocol instance @p and the
 * routing table specified in the configuration @cf, making the protocol hear
 * all changes in the table and allowing the protocol to update routes in the
 * table.
137
 *
138 139 140
 * The channel is linked in the protocol channel list and when active also in
 * the table channel list. Channels are allocated from the global resource pool
 * (@proto_pool) and they are automatically freed when the protocol is removed.
141
 */
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

struct channel *
proto_add_channel(struct proto *p, struct channel_config *cf)
{
  struct channel *c = mb_allocz(proto_pool, cf->channel->channel_size);

  c->name = cf->name;
  c->channel = cf->channel;
  c->proto = p;
  c->table = cf->table->table;

  c->in_filter = cf->in_filter;
  c->out_filter = cf->out_filter;
  c->rx_limit = cf->rx_limit;
  c->in_limit = cf->in_limit;
  c->out_limit = cf->out_limit;

  c->net_type = cf->net_type;
  c->ra_mode = cf->ra_mode;
  c->preference = cf->preference;
  c->merge_limit = cf->merge_limit;
  c->in_keep_filtered = cf->in_keep_filtered;

  c->channel_state = CS_DOWN;
  c->export_state = ES_DOWN;
167
  c->last_state_change = current_time();
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
  c->reloadable = 1;

  CALL(c->channel->init, c, cf);

  add_tail(&p->channels, &c->n);

  PD(p, "Channel %s connected to table %s", c->name, c->table->name);

  return c;
}

void
proto_remove_channel(struct proto *p, struct channel *c)
{
  ASSERT(c->channel_state == CS_DOWN);

  PD(p, "Channel %s removed", c->name);

  rem_node(&c->n);
  mb_free(c);
}


static void
proto_start_channels(struct proto *p)
{
  struct channel *c;
  WALK_LIST(c, p->channels)
    if (!c->disabled)
      channel_set_state(c, CS_UP);
}

static void
proto_pause_channels(struct proto *p)
202
{
203 204 205 206 207
  struct channel *c;
  WALK_LIST(c, p->channels)
    if (!c->disabled && channel_is_active(c))
      channel_set_state(c, CS_START);
}
208

209 210 211 212 213 214 215 216
static void
proto_stop_channels(struct proto *p)
{
  struct channel *c;
  WALK_LIST(c, p->channels)
    if (!c->disabled && channel_is_active(c))
      channel_set_state(c, CS_FLUSHING);
}
217

218 219 220 221 222 223 224 225 226 227 228 229 230
static void
proto_remove_channels(struct proto *p)
{
  struct channel *c;
  WALK_LIST_FIRST(c, p->channels)
    proto_remove_channel(p, c);
}

static void
channel_schedule_feed(struct channel *c, int initial)
{
  // DBG("%s: Scheduling meal\n", p->name);
  ASSERT(c->channel_state == CS_UP);
231

232 233
  c->export_state = ES_FEEDING;
  c->refeeding = !initial;
234

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
  ev_schedule(c->feed_event);
}

static void
channel_feed_loop(void *ptr)
{
  struct channel *c = ptr;

  if (c->export_state != ES_FEEDING)
    return;

  if (!c->feed_active)
    if (c->proto->feed_begin)
      c->proto->feed_begin(c, !c->refeeding);

  // DBG("Feeding protocol %s continued\n", p->name);
  if (!rt_feed_channel(c))
  {
    ev_schedule(c->feed_event);
    return;
  }

  // DBG("Feeding protocol %s finished\n", p->name);
  c->export_state = ES_READY;
  // proto_log_state_change(p);

  if (c->proto->feed_end)
    c->proto->feed_end(c);
}


static void
channel_start_export(struct channel *c)
{
  ASSERT(c->channel_state == CS_UP);
  ASSERT(c->export_state == ES_DOWN);

  channel_schedule_feed(c, 1);	/* Sets ES_FEEDING */
}

static void
channel_stop_export(struct channel *c)
{
  /* Need to abort feeding */
  if (c->export_state == ES_FEEDING)
    rt_feed_channel_abort(c);

  c->export_state = ES_DOWN;
283
  c->stats.exp_routes = 0;
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
}

static void
channel_do_start(struct channel *c)
{
  rt_lock_table(c->table);
  add_tail(&c->table->channels, &c->table_node);
  c->proto->active_channels++;

  c->feed_event = ev_new(c->proto->pool);
  c->feed_event->data = c;
  c->feed_event->hook = channel_feed_loop;

  channel_reset_limit(&c->rx_limit);
  channel_reset_limit(&c->in_limit);
  channel_reset_limit(&c->out_limit);

  CALL(c->channel->start, c);
}

static void
channel_do_flush(struct channel *c)
{
  rt_schedule_prune(c->table);

  c->gr_wait = 0;
  if (c->gr_lock)
    channel_graceful_restart_unlock(c);

  CALL(c->channel->shutdown, c);
}

static void
channel_do_down(struct channel *c)
{
319
  rem_node(&c->table_node);
320 321 322 323 324 325 326 327
  rt_unlock_table(c->table);
  c->proto->active_channels--;

  if ((c->stats.imp_routes + c->stats.filt_routes) != 0)
    log(L_ERR "%s: Channel %s is down but still has some routes", c->proto->name, c->name);

  memset(&c->stats, 0, sizeof(struct proto_stats));

Ondřej Zajíček's avatar
Ondřej Zajíček committed
328 329
  CALL(c->channel->cleanup, c);

330 331 332 333 334 335 336 337 338 339 340
  /* Schedule protocol shutddown */
  if (proto_is_done(c->proto))
    ev_schedule(c->proto->event);
}

void
channel_set_state(struct channel *c, uint state)
{
  uint cs = c->channel_state;
  uint es = c->export_state;

341
  DBG("%s reporting channel %s state transition %s -> %s\n", c->proto->name, c->name, c_states[cs], c_states[state]);
342 343 344 345
  if (state == cs)
    return;

  c->channel_state = state;
346
  c->last_state_change = current_time();
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366

  switch (state)
  {
  case CS_START:
    ASSERT(cs == CS_DOWN || cs == CS_UP);

    if (cs == CS_DOWN)
      channel_do_start(c);

    if (es != ES_DOWN)
      channel_stop_export(c);

    break;

  case CS_UP:
    ASSERT(cs == CS_DOWN || cs == CS_START);

    if (cs == CS_DOWN)
      channel_do_start(c);

367
    if (!c->gr_wait && c->proto->rt_notify)
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
      channel_start_export(c);

    break;

  case CS_FLUSHING:
    ASSERT(cs == CS_START || cs == CS_UP);

    if (es != ES_DOWN)
      channel_stop_export(c);

    channel_do_flush(c);
    break;

  case CS_DOWN:
    ASSERT(cs == CS_FLUSHING);

    channel_do_down(c);
    break;

  default:
    ASSERT(0);
  }
  // XXXX proto_log_state_change(c);
391 392
}

393
/**
394 395
 * channel_request_feeding - request feeding routes to the channel
 * @c: given channel
396
 *
397 398 399 400 401
 * Sometimes it is needed to send again all routes to the channel. This is
 * called feeding and can be requested by this function. This would cause
 * channel export state transition to ES_FEEDING (during feeding) and when
 * completed, it will switch back to ES_READY. This function can be called
 * even when feeding is already running, in that case it is restarted.
402
 */
403 404
void
channel_request_feeding(struct channel *c)
405
{
406
  ASSERT(c->channel_state == CS_UP);
407

408 409 410
  /* Do nothing if we are still waiting for feeding */
  if (c->export_state == ES_DOWN)
    return;
411

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
  /* If we are already feeding, we want to restart it */
  if (c->export_state == ES_FEEDING)
  {
    /* Unless feeding is in initial state */
    if (!c->feed_active)
	return;

    rt_feed_channel_abort(c);
  }

  channel_reset_limit(&c->out_limit);

  /* Hack: reset exp_routes during refeed, and do not decrease it later */
  c->stats.exp_routes = 0;

  channel_schedule_feed(c, 0);	/* Sets ES_FEEDING */
  // proto_log_state_change(c);
}

static inline int
channel_reloadable(struct channel *c)
{
  return c->proto->reload_routes && c->reloadable;
435 436
}

437
static void
438
channel_request_reload(struct channel *c)
439
{
440
  ASSERT(c->channel_state == CS_UP);
441
  ASSERT(channel_reloadable(c));
442 443

  c->proto->reload_routes(c);
444

445 446 447 448 449 450
  /*
   * Should this be done before reload_routes() hook?
   * Perhaps, but routes are updated asynchronously.
   */
  channel_reset_limit(&c->rx_limit);
  channel_reset_limit(&c->in_limit);
451 452
}

453 454 455 456 457 458
const struct channel_class channel_basic = {
  .channel_size = sizeof(struct channel),
  .config_size = sizeof(struct channel_config)
};

void *
459
channel_config_new(const struct channel_class *cc, const char *name, uint net_type, struct proto_config *proto)
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
{
  struct channel_config *cf = NULL;
  struct rtable_config *tab = NULL;

  if (net_type)
  {
    if (!net_val_match(net_type, proto->protocol->channel_mask))
      cf_error("Unsupported channel type");

    if (proto->net_type && (net_type != proto->net_type))
      cf_error("Different channel type");

    tab = new_config->def_tables[net_type];
  }

  if (!cc)
    cc = &channel_basic;

  cf = cfg_allocz(cc->config_size);
  cf->name = name;
  cf->channel = cc;
481
  cf->parent = proto;
482 483 484 485 486 487 488 489 490 491 492 493
  cf->table = tab;
  cf->out_filter = FILTER_REJECT;

  cf->net_type = net_type;
  cf->ra_mode = RA_OPTIMAL;
  cf->preference = proto->protocol->preference;

  add_tail(&proto->channels, &cf->n);

  return cf;
}

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
void *
channel_config_get(const struct channel_class *cc, const char *name, uint net_type, struct proto_config *proto)
{
  struct channel_config *cf;

  /* We are using name as token, so no strcmp() */
  WALK_LIST(cf, proto->channels)
    if (cf->name == name)
    {
      /* Allow to redefine channel only if inherited from template */
      if (cf->parent == proto)
	cf_error("Multiple %s channels", name);

      cf->parent = proto;
      return cf;
    }

  return channel_config_new(cc, name, net_type, proto);
}

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
struct channel_config *
channel_copy_config(struct channel_config *src, struct proto_config *proto)
{
  struct channel_config *dst = cfg_alloc(src->channel->config_size);

  memcpy(dst, src, src->channel->config_size);
  add_tail(&proto->channels, &dst->n);
  CALL(src->channel->copy_config, dst, src);

  return dst;
}


static int reconfigure_type;  /* Hack to propagate type info to channel_reconfigure() */

int
channel_reconfigure(struct channel *c, struct channel_config *cf)
{
  /* FIXME: better handle these changes, also handle in_keep_filtered */
Ondřej Zajíček's avatar
Ondřej Zajíček committed
533
  if ((c->table != cf->table->table) || (cf->ra_mode && (c->ra_mode != cf->ra_mode)))
534 535
    return 0;

536 537 538
  /* Note that filter_same() requires arguments in (new, old) order */
  int import_changed = !filter_same(cf->in_filter, c->in_filter);
  int export_changed = !filter_same(cf->out_filter, c->out_filter);
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559

  if (c->preference != cf->preference)
    import_changed = 1;

  if (c->merge_limit != cf->merge_limit)
    export_changed = 1;

  /* Reconfigure channel fields */
  c->in_filter = cf->in_filter;
  c->out_filter = cf->out_filter;
  c->rx_limit = cf->rx_limit;
  c->in_limit = cf->in_limit;
  c->out_limit = cf->out_limit;

  // c->ra_mode = cf->ra_mode;
  c->merge_limit = cf->merge_limit;
  c->preference = cf->preference;
  c->in_keep_filtered = cf->in_keep_filtered;

  channel_verify_limits(c);

Ondřej Zajíček's avatar
Ondřej Zajíček committed
560 561 562
  /* Execute channel-specific reconfigure hook */
  if (c->channel->reconfigure && !c->channel->reconfigure(c, cf))
    return 0;
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597

  /* If the channel is not open, it has no routes and we cannot reload it anyways */
  if (c->channel_state != CS_UP)
    return 1;

  if (reconfigure_type == RECONFIG_SOFT)
  {
    if (import_changed)
      log(L_INFO "Channel %s.%s changed import", c->proto->name, c->name);

    if (export_changed)
      log(L_INFO "Channel %s.%s changed export", c->proto->name, c->name);

    return 1;
  }

  /* Route reload may be not supported */
  if (import_changed && !channel_reloadable(c))
    return 0;

  if (import_changed || export_changed)
    log(L_INFO "Reloading channel %s.%s", c->proto->name, c->name);

  if (import_changed)
    channel_request_reload(c);

  if (export_changed)
    channel_request_feeding(c);

  return 1;
}


int
proto_configure_channel(struct proto *p, struct channel **pc, struct channel_config *cf)
598
{
599
  struct channel *c = *pc;
600

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
  if (!c && cf)
  {
    *pc = proto_add_channel(p, cf);
  }
  else if (c && !cf)
  {
    if (c->channel_state != CS_DOWN)
    {
      log(L_INFO "Cannot remove channel %s.%s", c->proto->name, c->name);
      return 0;
    }

    proto_remove_channel(p, c);
    *pc = NULL;
  }
  else if (c && cf)
  {
    if (!channel_reconfigure(c, cf))
    {
      log(L_INFO "Cannot reconfigure channel %s.%s", c->proto->name, c->name);
      return 0;
    }
  }

  return 1;
626 627
}

628

629
static void
630
proto_event(void *ptr)
631
{
632 633 634 635 636 637 638
  struct proto *p = ptr;

  if (p->do_start)
  {
    if_feed_baby(p);
    p->do_start = 0;
  }
639

640
  if (p->do_stop)
641
  {
642 643 644
    if (p->proto == &proto_unix_iface)
      if_flush_ifaces(p);
    p->do_stop = 0;
645 646
  }

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
  if (proto_is_done(p))
  {
    if (p->proto->cleanup)
      p->proto->cleanup(p);

    p->active = 0;
    proto_log_state_change(p);
    proto_rethink_goal(p);
  }
}


/**
 * proto_new - create a new protocol instance
 * @c: protocol configuration
 *
 * When a new configuration has been read in, the core code starts
 * initializing all the protocol instances configured by calling their
 * init() hooks with the corresponding instance configuration. The initialization
 * code of the protocol is expected to create a new instance according to the
 * configuration by calling this function and then modifying the default settings
 * to values wanted by the protocol.
 */
void *
proto_new(struct proto_config *cf)
{
  struct proto *p = mb_allocz(proto_pool, cf->protocol->proto_size);

  p->cf = cf;
  p->debug = cf->debug;
  p->mrtdump = cf->mrtdump;
  p->name = cf->name;
  p->proto = cf->protocol;
  p->net_type = cf->net_type;
  p->disabled = cf->disabled;
  p->hash_key = random_u32();
  cf->proto = p;

  init_list(&p->channels);

  return p;
}

static struct proto *
proto_init(struct proto_config *c, node *n)
{
  struct protocol *pr = c->protocol;
  struct proto *p = pr->init(c);

  p->proto_state = PS_DOWN;
697
  p->last_state_change = current_time();
698
  p->vrf = c->vrf;
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
  insert_node(&p->n, n);

  p->event = ev_new(proto_pool);
  p->event->hook = proto_event;
  p->event->data = p;

  PD(p, "Initializing%s", p->disabled ? " [disabled]" : "");

  return p;
}

static void
proto_start(struct proto *p)
{
  /* Here we cannot use p->cf->name since it won't survive reconfiguration */
  p->pool = rp_new(proto_pool, p->proto->name);

  if (graceful_restart_state == GRS_INIT)
    p->gr_recovery = 1;
718 719
}

720

721 722 723
/**
 * proto_config_new - create a new protocol configuration
 * @pr: protocol the configuration will belong to
724
 * @class: SYM_PROTO or SYM_TEMPLATE
725 726 727 728 729 730 731 732
 *
 * Whenever the configuration file says that a new instance
 * of a routing protocol should be created, the parser calls
 * proto_config_new() to create a configuration entry for this
 * instance (a structure staring with the &proto_config header
 * containing all the generic items followed by protocol-specific
 * ones). Also, the configuration entry gets added to the list
 * of protocol instances kept in the configuration.
733 734 735 736 737
 *
 * The function is also used to create protocol templates (when class
 * SYM_TEMPLATE is specified), the only difference is that templates
 * are not added to the list of protocol instances and therefore not
 * initialized during protos_commit()).
738
 */
739
void *
740
proto_config_new(struct protocol *pr, int class)
741
{
742
  struct proto_config *cf = cfg_allocz(pr->config_size);
743

744
  if (class == SYM_PROTO)
745 746 747 748 749 750 751 752 753 754 755 756
    add_tail(&new_config->protos, &cf->n);

  cf->global = new_config;
  cf->protocol = pr;
  cf->name = pr->name;
  cf->class = class;
  cf->debug = new_config->proto_default_debug;
  cf->mrtdump = new_config->proto_default_mrtdump;

  init_list(&cf->channels);

  return cf;
757 758
}

759

760 761 762 763 764 765 766 767 768 769 770 771 772 773
/**
 * proto_copy_config - copy a protocol configuration
 * @dest: destination protocol configuration
 * @src: source protocol configuration
 *
 * Whenever a new instance of a routing protocol is created from the
 * template, proto_copy_config() is called to copy a content of
 * the source protocol configuration to the new protocol configuration.
 * Name, class and a node in protos list of @dest are kept intact.
 * copy_config() protocol hook is used to copy protocol-specific data.
 */
void
proto_copy_config(struct proto_config *dest, struct proto_config *src)
{
774
  struct channel_config *cc;
775 776 777 778 779 780 781 782 783 784 785 786
  node old_node;
  int old_class;
  char *old_name;

  if (dest->protocol != src->protocol)
    cf_error("Can't copy configuration from a different protocol type");

  if (dest->protocol->copy_config == NULL)
    cf_error("Inheriting configuration for %s is not supported", src->protocol->name);

  DBG("Copying configuration from %s to %s\n", src->name, dest->name);

787
  /*
788 789 790 791 792 793 794 795
   * Copy struct proto_config here. Keep original node, class and name.
   * protocol-specific config copy is handled by protocol copy_config() hook
   */

  old_node = dest->n;
  old_class = dest->class;
  old_name = dest->name;

796
  memcpy(dest, src, src->protocol->config_size);
797 798 799 800

  dest->n = old_node;
  dest->class = old_class;
  dest->name = old_name;
801
  init_list(&dest->channels);
802

803 804 805 806
  WALK_LIST(cc, src->channels)
    channel_copy_config(cc, dest);

  /* FIXME: allow for undefined copy_config */
807 808 809
  dest->protocol->copy_config(dest, src);
}

810 811 812 813 814 815 816 817
/**
 * protos_preconfig - pre-configuration processing
 * @c: new configuration
 *
 * This function calls the preconfig() hooks of all routing
 * protocols available to prepare them for reading of the new
 * configuration.
 */
818
void
819
protos_preconfig(struct config *c)
820
{
821 822
  struct protocol *p;

823
  init_list(&c->protos);
824
  DBG("Protocol preconfig:");
825
  WALK_LIST(p, protocol_list)
826 827 828 829 830 831
  {
    DBG(" %s", p->name);
    p->name_counter = 0;
    if (p->preconfig)
      p->preconfig(p, c);
  }
832
  DBG("\n");
833 834
}

835 836 837 838 839 840 841 842 843
static int
proto_reconfigure(struct proto *p, struct proto_config *oc, struct proto_config *nc, int type)
{
  /* If the protocol is DOWN, we just restart it */
  if (p->proto_state == PS_DOWN)
    return 0;

  /* If there is a too big change in core attributes, ... */
  if ((nc->protocol != oc->protocol) ||
844
      (nc->net_type != oc->net_type) ||
845
      (nc->disabled != p->disabled) ||
846
      (nc->vrf != oc->vrf))
847 848
    return 0;

849
  p->name = nc->name;
850 851
  p->debug = nc->debug;
  p->mrtdump = nc->mrtdump;
852
  reconfigure_type = type;
853 854

  /* Execute protocol specific reconfigure hook */
855
  if (!p->proto->reconfigure || !p->proto->reconfigure(p, nc))
856 857 858 859 860 861 862 863 864
    return 0;

  DBG("\t%s: same\n", oc->name);
  PD(p, "Reconfigured");
  p->cf = nc;

  return 1;
}

865 866 867 868 869 870
/**
 * protos_commit - commit new protocol configuration
 * @new: new configuration
 * @old: old configuration or %NULL if it's boot time config
 * @force_reconfig: force restart of all protocols (used for example
 * when the router ID changes)
871
 * @type: type of reconfiguration (RECONFIG_SOFT or RECONFIG_HARD)
872 873 874 875 876 877 878 879 880 881 882 883
 *
 * Scan differences between @old and @new configuration and adjust all
 * protocol instances to conform to the new configuration.
 *
 * When a protocol exists in the new configuration, but it doesn't in the
 * original one, it's immediately started. When a collision with the other
 * running protocol would arise, the new protocol will be temporarily stopped
 * by the locking mechanism.
 *
 * When a protocol exists in the old configuration, but it doesn't in the
 * new one, it's shut down and deleted after the shutdown completes.
 *
884 885 886 887 888 889 890 891
 * When a protocol exists in both configurations, the core decides
 * whether it's possible to reconfigure it dynamically - it checks all
 * the core properties of the protocol (changes in filters are ignored
 * if type is RECONFIG_SOFT) and if they match, it asks the
 * reconfigure() hook of the protocol to see if the protocol is able
 * to switch to the new configuration.  If it isn't possible, the
 * protocol is shut down and a new instance is started with the new
 * configuration after the shutdown is completed.
892
 */
893
void
894
protos_commit(struct config *new, struct config *old, int force_reconfig, int type)
895
{
896
  struct proto_config *oc, *nc;
897
  struct symbol *sym;
898 899 900
  struct proto *p;
  node *n;

901

902 903
  DBG("protos_commit:\n");
  if (old)
904 905
  {
    WALK_LIST(oc, old->protos)
906
    {
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
      p = oc->proto;
      sym = cf_find_symbol(new, oc->name);
      if (sym && sym->class == SYM_PROTO && !new->shutdown)
      {
	/* Found match, let's check if we can smoothly switch to new configuration */
	/* No need to check description */
	nc = sym->def;
	nc->proto = p;

	/* We will try to reconfigure protocol p */
	if (! force_reconfig && proto_reconfigure(p, oc, nc, type))
	  continue;

	/* Unsuccessful, we will restart it */
	if (!p->disabled && !nc->disabled)
	  log(L_INFO "Restarting protocol %s", p->name);
	else if (p->disabled && !nc->disabled)
	  log(L_INFO "Enabling protocol %s", p->name);
	else if (!p->disabled && nc->disabled)
	  log(L_INFO "Disabling protocol %s", p->name);

	p->down_code = nc->disabled ? PDC_CF_DISABLE : PDC_CF_RESTART;
	p->cf_new = nc;
      }
      else if (!new->shutdown)
      {
	log(L_INFO "Removing protocol %s", p->name);
	p->down_code = PDC_CF_REMOVE;
	p->cf_new = NULL;
      }
      else /* global shutdown */
      {
	p->down_code = PDC_CMD_SHUTDOWN;
	p->cf_new = NULL;
      }

      p->reconfiguring = 1;
      config_add_obstacle(old);
      proto_rethink_goal(p);
946
    }
947 948 949
  }

  struct proto *first_dev_proto = NULL;
950

951
  n = NODE &(proto_list.head);
952 953
  WALK_LIST(nc, new->protos)
    if (!nc->proto)
954 955 956 957 958 959 960 961 962 963 964 965 966
    {
      /* Not a first-time configuration */
      if (old)
	log(L_INFO "Adding protocol %s", nc->name);

      p = proto_init(nc, n);
      n = NODE p;

      if (p->proto == &proto_unix_iface)
	first_dev_proto = p;
    }
    else
      n = NODE nc->proto;
967 968

  DBG("Protocol start\n");
969 970

  /* Start device protocol first */
971 972
  if (first_dev_proto)
    proto_rethink_goal(first_dev_proto);
973

974 975 976
  /* Determine router ID for the first time - it has to be here and not in
     global_commit() because it is postponed after start of device protocol */
  if (!config->router_id)
977 978 979 980 981
  {
    config->router_id = if_choose_router_id(config->router_id_from, 0);
    if (!config->router_id)
      die("Cannot determine router ID, please configure it manually");
  }
982

983 984
  /* Start all new protocols */
  WALK_LIST_DELSAFE(p, n, proto_list)
985
    proto_rethink_goal(p);
986 987
}

988
static void
989
proto_rethink_goal(struct proto *p)
990
{
991
  struct protocol *q;
992
  byte goal;
993

994 995 996 997 998 999 1000 1001 1002 1003
  if (p->reconfiguring && !p->active)
  {
    struct proto_config *nc = p->cf_new;
    node *n = p->n.prev;
    DBG("%s has shut down for reconfiguration\n", p->name);
    p->cf->proto = NULL;
    config_del_obstacle(p->cf->global);
    proto_remove_channels(p);
    rem_node(&p->n);
    rfree(p->event);
1004
    mb_free(p->message);
1005 1006 1007 1008 1009
    mb_free(p);
    if (!nc)
      return;
    p = proto_init(nc, n);
  }
1010 1011

  /* Determine what state we want to reach */
1012
  if (p->disabled || p->reconfiguring)
1013
    goal = PS_DOWN;
1014
  else
1015
    goal = PS_UP;
1016 1017

  q = p->proto;
1018 1019 1020
  if (goal == PS_UP)
  {
    if (!p->active)
1021
    {
1022 1023 1024 1025 1026
      /* Going up */
      DBG("Kicking %s up\n", p->name);
      PD(p, "Starting");
      proto_start(p);
      proto_notify_state(p, (q->start ? q->start(p) : PS_UP));
1027
    }
1028 1029 1030 1031
  }
  else
  {
    if (p->proto_state == PS_START || p->proto_state == PS_UP)
1032
    {
1033 1034 1035 1036
      /* Going down */
      DBG("Kicking %s down\n", p->name);
      PD(p, "Shutting down");
      proto_notify_state(p, (q->shutdown ? q->shutdown(p) : PS_DOWN));
1037
    }
1038
  }
1039 1040
}

1041

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
/**
 * DOC: Graceful restart recovery
 *
 * Graceful restart of a router is a process when the routing plane (e.g. BIRD)
 * restarts but both the forwarding plane (e.g kernel routing table) and routing
 * neighbors keep proper routes, and therefore uninterrupted packet forwarding
 * is maintained.
 *
 * BIRD implements graceful restart recovery by deferring export of routes to
 * protocols until routing tables are refilled with the expected content. After
 * start, protocols generate routes as usual, but routes are not propagated to
 * them, until protocols report that they generated all routes. After that,
 * graceful restart recovery is finished and the export (and the initial feed)
 * to protocols is enabled.
 *
 * When graceful restart recovery need is detected during initialization, then
 * enabled protocols are marked with @gr_recovery flag before start. Such
 * protocols then decide how to proceed with graceful restart, participation is
1060
 * voluntary. Protocols could lock the recovery for each channel by function
1061
 * channel_graceful_restart_lock() (state stored in @gr_lock flag), which means
1062 1063 1064 1065 1066 1067
 * that they want to postpone the end of the recovery until they converge and
 * then unlock it. They also could set @gr_wait before advancing to %PS_UP,
 * which means that the core should defer route export to that channel until
 * the end of the recovery. This should be done by protocols that expect their
 * neigbors to keep the proper routes (kernel table, BGP sessions with BGP
 * graceful restart capability).
1068 1069 1070 1071 1072
 *
 * The graceful restart recovery is finished when either all graceful restart
 * locks are unlocked or when graceful restart wait timer fires.
 *
 */
1073

1074
static void graceful_restart_done(timer *t);
1075

1076 1077 1078 1079 1080 1081 1082
/**
 * graceful_restart_recovery - request initial graceful restart recovery
 *
 * Called by the platform initialization code if the need for recovery
 * after graceful restart is detected during boot. Have to be called
 * before protos_commit().
 */
1083 1084 1085 1086 1087 1088
void
graceful_restart_recovery(void)
{
  graceful_restart_state = GRS_INIT;
}

1089 1090 1091 1092 1093 1094 1095
/**
 * graceful_restart_init - initialize graceful restart
 *
 * When graceful restart recovery was requested, the function starts an active
 * phase of the recovery and initializes graceful restart wait timer. The
 * function have to be called after protos_commit().
 */
1096 1097 1098 1099 1100 1101 1102 1103 1104
void
graceful_restart_init(void)
{
  if (!graceful_restart_state)
    return;

  log(L_INFO "Graceful restart started");

  if (!graceful_restart_locks)
1105 1106 1107 1108
  {
    graceful_restart_done(NULL);
    return;
  }
1109 1110

  graceful_restart_state = GRS_ACTIVE;
1111 1112
  gr_wait_timer = tm_new_init(proto_pool, graceful_restart_done, NULL, 0, 0);
  tm_start(gr_wait_timer, config->gr_wait S);
1113 1114
}

1115 1116
/**
 * graceful_restart_done - finalize graceful restart
1117
 * @t: unused
1118 1119 1120 1121 1122 1123 1124
 *
 * When there are no locks on graceful restart, the functions finalizes the
 * graceful restart recovery. Protocols postponing route export until the end of
 * the recovery are awakened and the export to them is enabled. All other
 * related state is cleared. The function is also called when the graceful
 * restart wait timer fires (but there are still some locks).
 */
1125
static void
1126
graceful_restart_done(timer *t UNUSED)
1127 1128 1129 1130
{
  log(L_INFO "Graceful restart done");
  graceful_restart_state = GRS_DONE;

1131 1132 1133 1134 1135
  struct proto *p;
  WALK_LIST(p, proto_list)
  {
    if (!p->gr_recovery)
      continue;
1136

1137 1138 1139
    struct channel *c;
    WALK_LIST(c, p->channels)
    {
1140
      /* Resume postponed export of routes */
1141
      if ((c->channel_state == CS_UP) && c->gr_wait && c->proto->rt_notify)
1142
	channel_start_export(c);
1143 1144

      /* Cleanup */
1145 1146
      c->gr_wait = 0;
      c->gr_lock = 0;
1147 1148
    }

1149 1150 1151
    p->gr_recovery = 0;
  }

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
  graceful_restart_locks = 0;
}

void
graceful_restart_show_status(void)
{
  if (graceful_restart_state != GRS_ACTIVE)
    return;

  cli_msg(-24, "Graceful restart recovery in progress");
1162
  cli_msg(-24, "  Waiting for %d channels to recover", graceful_restart_locks);
1163
  cli_msg(-24, "  Wait timer is %t/%u", tm_remains(gr_wait_timer), config->gr_wait);
1164 1165
}

1166
/**
1167 1168
 * channel_graceful_restart_lock - lock graceful restart by channel
 * @p: channel instance
1169 1170 1171
 *
 * This function allows a protocol to postpone the end of graceful restart
 * recovery until it converges. The lock is removed when the protocol calls
1172
 * channel_graceful_restart_unlock() or when the channel is closed.
1173 1174 1175 1176 1177 1178
 *
 * The function have to be called during the initial phase of graceful restart
 * recovery and only for protocols that are part of graceful restart (i.e. their
 * @gr_recovery is set), which means it should be called from protocol start
 * hooks.
 */
1179
void
1180
channel_graceful_restart_lock(struct channel *c)
1181 1182
{
  ASSERT(graceful_restart_state == GRS_INIT);
1183
  ASSERT(c->proto->gr_recovery);
1184

1185
  if (c->gr_lock)
1186 1187
    return;

1188
  c->gr_lock = 1;
1189 1190 1191
  graceful_restart_locks++;
}

1192
/**
1193 1194
 * channel_graceful_restart_unlock - unlock graceful restart by channel
 * @p: channel instance
1195
 *
1196
 * This function unlocks a lock from channel_graceful_restart_lock(). It is also
1197 1198
 * automatically called when the lock holding protocol went down.
 */
1199
void
1200
channel_graceful_restart_unlock(struct channel *c)
1201
{
1202
  if (!c->gr_lock)
1203 1204
    return;

1205
  c->gr_lock = 0;
1206 1207 1208
  graceful_restart_locks--;

  if ((graceful_restart_state == GRS_ACTIVE) && !graceful_restart_locks)
1209
    tm_start(gr_wait_timer, 0);
1210 1211 1212 1213
}



1214 1215 1216 1217 1218 1219 1220 1221 1222
/**
 * protos_dump_all - dump status of all protocols
 *
 * This function dumps status of all existing protocol instances to the
 * debug output. It involves printing of general status information
 * such as protocol states, its position on the protocol lists
 * and also calling of a dump() hook of the protocol to print
 * the internals.
 */
1223 1224 1225 1226 1227
void
protos_dump_all(void)
{
  debug("Protocols:\n");

1228 1229 1230 1231 1232 1233 1234
  struct proto *p;
  WALK_LIST(p, proto_list)
  {
    debug("  protocol %s state %s\n", p->name, p_states[p->proto_state]);

    struct channel *c;
    WALK_LIST(c, p->channels)
1235
    {
1236 1237 1238 1239 1240
      debug("\tTABLE %s\n", c->table->name);
      if (c->in_filter)
	debug("\tInput filter: %s\n", filter_name(c->in_filter));
      if (c->out_filter)
	debug("\tOutput filter: %s\n", filter_name(c->out_filter));
1241
    }
1242 1243 1244 1245

    if (p->proto->dump && (p->proto_state != PS_DOWN))
      p->proto->dump(p);
  }
1246 1247
}

1248 1249 1250 1251 1252 1253
/**
 * proto_build - make a single protocol available
 * @p: the protocol
 *
 * After the platform specific initialization code uses protos_build()
 * to add all the standard protocols, it should call proto_build() for
1254
 * all platform specific protocols to inform the core that they exist.
1255
 */
1256 1257 1258 1259
void
proto_build(struct protocol *p)
{
  add_tail(&protocol_list, &p->n);
1260 1261 1262
  ASSERT(p->class);
  ASSERT(!class_to_protocol[p->class]);
  class_to_protocol[p->class] = p;
1263 1264
}

1265 1266 1267
/* FIXME: convert this call to some protocol hook */
extern void bfd_init_all(void);

1268 1269 1270 1271 1272 1273 1274 1275 1276
/**
 * protos_build - build a protocol list
 *
 * This function is called during BIRD startup to insert
 * all standard protocols to the global protocol list. Insertion
 * of platform specific protocols (such as the kernel syncer)
 * is in the domain of competence of the platform dependent
 * startup code.
 */
1277 1278 1279
void
protos_build(void)
{
1280
  init_list(&proto_list);
1281 1282
  init_list(&protocol_list);

1283
  proto_build(&proto_device);
1284 1285 1286
#ifdef CONFIG_RADV
  proto_build(&proto_radv);
#endif
1287
#ifdef CONFIG_RIP
1288
  proto_build(&proto_rip);
1289 1290
#endif
#ifdef CONFIG_STATIC
1291
  proto_build(&proto_static);
Ondřej Filip's avatar
Ondřej Filip committed
1292 1293
#endif
#ifdef CONFIG_OSPF
1294
  proto_build(&proto_ospf);
1295 1296
#endif
#ifdef CONFIG_PIPE
1297
  proto_build(&proto_pipe);
1298 1299
#endif
#ifdef CONFIG_BGP
1300
  proto_build(&proto_bgp);
1301
#endif
1302
#ifdef CONFIG_BFD
1303
  proto_build(&proto_bfd);
1304 1305
  bfd_init_all();
#endif
1306 1307 1308
#ifdef CONFIG_BABEL
  proto_build(&proto_babel);
#endif
1309 1310 1311
#ifdef CONFIG_RPKI
  proto_build(&proto_rpki);
#endif
1312

1313
  proto_pool = rp_new(&root_pool, "Protocols");
1314
  proto_shutdown_timer = tm_new(proto_pool);
1315
  proto_shutdown_timer->hook = proto_shutdown_loop;
1316 1317
}

1318

1319 1320
/* Temporary hack to propagate restart to BGP */
int proto_restart;
1321

1322
static void
1323
proto_shutdown_loop(timer *t UNUSED)
1324 1325 1326
{
  struct proto *p, *p_next;

1327
  WALK_LIST_DELSAFE(p, p_next, proto_list)
1328
    if (p->down_sched)
1329 1330
    {
      proto_restart = (p->down_sched == PDS_RESTART);
1331

1332 1333 1334 1335 1336
      p->disabled = 1;
      proto_rethink_goal(p);
      if (proto_restart)
      {
	p->disabled = 0;
1337 1338
	proto_rethink_goal(p);
      }
1339
    }
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
}

static inline void
proto_schedule_down(struct proto *p, byte restart, byte code)
{
  /* Does not work for other states (even PS_START) */
  ASSERT(p->proto_state == PS_UP);

  /* Scheduled restart may change to shutdown, but not otherwise */
  if (p->down_sched == PDS_DISABLE)
    return;

  p->down_sched = restart ? PDS_RESTART : PDS_DISABLE;
  p->down_code = code;
1354
  tm_start_max(proto_shutdown_timer, restart ? 250 MS : 0);
1355 1356
}

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
/**
 * proto_set_message - set administrative message to protocol
 * @p: protocol
 * @msg: message
 * @len: message length (-1 for NULL-terminated string)
 *
 * The function sets administrative message (string) related to protocol state
 * change. It is called by the nest code for manual enable/disable/restart
 * commands all routes to the protocol, and by protocol-specific code when the
 * protocol state change is initiated by the protocol. Using NULL message clears
 * the last message. The message string may be either NULL-terminated or with an
 * explicit length.
 */
void
proto_set_message(struct proto *p, char *msg, int len)
{
  mb_free(p->message);
  p->message = NULL;

  if (!msg || !len)
    return;

  if (len < 0)
    len = strlen(msg);

  if (!len)
    return;

  p->message = mb_alloc(proto_pool, len + 1);
  memcpy(p->message, msg, len);
  p->message[len] = 0;
}

1390 1391

static const char *
1392
channel_limit_name(struct channel_limit *l)
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
{
  const char *actions[] = {
    [PLA_WARN] = "warn",
    [PLA_BLOCK] = "block",
    [PLA_RESTART] = "restart",
    [PLA_DISABLE] = "disable",
  };

  return actions[l->action];
}

/**
1405 1406
 * channel_notify_limit: notify about limit hit and take appropriate action
 * @c: channel
1407
 * @l: limit being hit
1408
 * @dir: limit direction (PLD_*)
1409
 * @rt_count: the number of routes
1410 1411 1412
 *
 * The function is called by the route processing core when limit @l
 * is breached. It activates the limit and tooks appropriate action
1413
 * according to @l->action.
1414
 */
1415
void
1416
channel_notify_limit(struct channel *c, struct channel_limit *l, int dir, u32 rt_count)
1417
{
1418 1419
  const char *dir_name[PLD_MAX] = { "receive", "import" , "export" };
  const byte dir_down[PLD_MAX] = { PDC_RX_LIMIT_HIT, PDC_IN_LIMIT_HIT, PDC_OUT_LIMIT_HIT };
1420
  struct proto *p = c->proto;
1421

1422 1423
  if (l->state == PLS_BLOCKED)
    return;
1424

1425 1426
  /* For warning action, we want the log message every time we hit the limit */
  if (!l->state || ((l->action == PLA_WARN) && (rt_count == l->limit)))
1427
    log(L_WARN "Protocol %s hits route %s limit (%d), action: %s",
1428
	p->name, dir_name[dir], l->limit, channel_limit_name(l));
1429 1430

  switch (l->action)
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
  {
  case PLA_WARN:
    l->state = PLS_ACTIVE;
    break;

  case PLA_BLOCK:
    l->state = PLS_BLOCKED;
    break;

  case PLA_RESTART:
  case PLA_DISABLE:
    l->state = PLS_BLOCKED;
    if (p->proto_state == PS_UP)
      proto_schedule_down(p, l->action == PLA_RESTART, dir_down[dir]);
    break;
  }
1447 1448
}

1449 1450
static void
channel_verify_limits(struct channel *c)
1451
{
1452 1453
  struct channel_limit *l;
  u32 all_routes = c->stats.imp_routes + c->stats.filt_routes;
1454

1455 1456 1457
  l = &c->rx_limit;
  if (l->action && (all_routes > l->limit))
    channel_notify_limit(c, l, PLD_RX, all_routes);
1458

1459 1460 1461
  l = &c->in_limit;
  if (l->action && (c->stats.imp_routes > l->limit))
    channel_notify_limit(c, l, PLD_IN, c->stats.imp_routes);
1462

1463 1464 1465
  l = &c->out_limit;
  if (l->action && (c->stats.exp_routes > l->limit))
    channel_notify_limit(c, l, PLD_OUT, c->stats.exp_routes);
1466 1467
}

1468 1469
static inline void
channel_reset_limit(struct channel_limit *l)
1470
{
1471 1472
  if (l->action)
    l->state = PLS_INITIAL;
1473 1474
}

1475 1476
static inline void
proto_do_start(struct proto *p)
1477
{
1478 1479 1480
  p->active = 1;
  p->do_start = 1;
  ev_schedule(p->event);
1481 1482 1483
}

static void
1484
proto_do_up(struct proto *p)
1485
{
1486 1487 1488 1489 1490
  if (!p->main_source)
  {
    p->main_source = rt_get_source(p, 0);
    rt_lock_source(p->main_source);
  }
1491

1492
  proto_start_channels(p);
1493 1494
}

1495 1496
static inline void
proto_do_pause(struct proto *p)
1497
{
1498
  proto_pause_channels(p);
1499 1500 1501
}

static void
1502
proto_do_stop(struct proto *p)
1503
{
1504
  p->down_sched = 0;
1505
  p->gr_recovery = 0;
1506

1507 1508
  p->do_stop = 1;
  ev_schedule(p->event);
1509

1510 1511 1512 1513 1514
  if (p->main_source)
  {
    rt_unlock_source(p->main_source);
    p->main_source = NULL;
  }
1515

1516 1517
  proto_stop_channels(p);
}
1518

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
static void
proto_do_down(struct proto *p)
{
  p->down_code = 0;
  neigh_prune();
  rfree(p->pool);
  p->pool = NULL;

  /* Shutdown is finished in the protocol event */
  if (proto_is_done(p))
    ev_schedule(p->event);
1530 1531
}

1532

1533

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
/**
 * proto_notify_state - notify core about protocol state change
 * @p: protocol the state of which has changed
 * @ps: the new status
 *
 * Whenever a state of a protocol changes due to some event internal
 * to the protocol (i.e., not inside a start() or shutdown() hook),
 * it should immediately notify the core about the change by calling
 * proto_notify_state() which will write the new state to the &proto
 * structure and take all the actions necessary to adapt to the new
1544 1545 1546
 * state. State change to PS_DOWN immediately frees resources of protocol
 * and might execute start callback of protocol; therefore,
 * it should be used at tail positions of protocol callbacks.
1547
 */
1548
void
1549
proto_notify_state(struct proto *p, uint state)
1550
{
1551
  uint ps = p->proto_state;
1552

1553 1554
  DBG("%s reporting state transition %s -> %s\n", p->name, p_states[ps], p_states[state]);
  if (state == ps)
1555 1556
    return;

1557
  p->proto_state = state;
1558
  p->last_state_change = current_time();
1559

1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
  switch (state)
  {
  case PS_START:
    ASSERT(ps == PS_DOWN || ps == PS_UP);

    if (ps == PS_DOWN)
      proto_do_start(p);
    else
      proto_do_pause(p);
    break;

  case PS_UP:
    ASSERT(ps == PS_DOWN || ps == PS_START);

    if (ps == PS_DOWN)
      proto_do_start(p);

    proto_do_up(p);
    break;

  case PS_STOP:
    ASSERT(ps == PS_START || ps == PS_UP);

    proto_do_stop(p);
    break;

  case PS_DOWN:
    if (ps != PS_STOP)
      proto_do_stop(p);

    proto_do_down(p);
    break;

  default:
    bug("%s: Invalid state %d", p->name, ps);
  }
1596 1597

  proto_log_state_change(p);
1598
}
1599

1600 1601 1602 1603 1604 1605 1606
/*
 *  CLI Commands
 */

static char *
proto_state_name(struct proto *p)
{
1607 1608 1609 1610 1611 1612 1613 1614
  switch (p->proto_state)
  {
  case PS_DOWN:		return p->active ? "flush" : "down";
  case PS_START:	return "start";
  case PS_UP:		return "up";
  case PS_STOP:		return "stop";
  default:		return "???";
  }