io.c 34.3 KB
Newer Older
1 2 3
/*
 *	BIRD Internet Routing Daemon -- Unix I/O
 *
4
 *	(c) 1998--2004 Martin Mares <mj@ucw.cz>
5
 *      (c) 2004       Ondrej Filip <feela@network.cz>
6 7 8 9
 *
 *	Can be freely distributed and used under the terms of the GNU GPL.
 */

10 11 12 13
/* Unfortunately, some glibc versions hide parts of RFC 3542 API
   if _GNU_SOURCE is not defined. */
#define _GNU_SOURCE 1

14 15
#include <stdio.h>
#include <stdlib.h>
16
#include <time.h>
17 18 19 20
#include <sys/time.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/fcntl.h>
21
#include <sys/uio.h>
22
#include <sys/un.h>
23 24
#include <unistd.h>
#include <errno.h>
Ondřej Zajíček's avatar
Ondřej Zajíček committed
25
#include <netinet/in.h>
26
#include <netinet/icmp6.h>
27 28 29 30 31 32

#include "nest/bird.h"
#include "lib/lists.h"
#include "lib/resource.h"
#include "lib/timer.h"
#include "lib/socket.h"
33
#include "lib/event.h"
34
#include "lib/string.h"
35 36 37
#include "nest/iface.h"

#include "lib/unix.h"
38
#include "lib/sysio.h"
39

40
/* Maximum number of calls of tx handler for one socket in one
41 42 43 44 45
 * select iteration. Should be small enough to not monopolize CPU by
 * one protocol instance.
 */
#define MAX_STEPS 4

46 47 48 49 50
/* Maximum number of calls of rx handler for all sockets in one select
   iteration. RX callbacks are often much more costly so we limit
   this to gen small latencies */
#define MAX_RX_STEPS 4

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
/*
 *	Tracked Files
 */

struct rfile {
  resource r;
  FILE *f;
};

static void
rf_free(resource *r)
{
  struct rfile *a = (struct rfile *) r;

  fclose(a->f);
}

static void
rf_dump(resource *r)
{
  struct rfile *a = (struct rfile *) r;

  debug("(FILE *%p)\n", a->f);
}

static struct resclass rf_class = {
  "FILE",
  sizeof(struct rfile),
  rf_free,
80
  rf_dump,
81
  NULL,
82
  NULL
83 84 85
};

void *
86
tracked_fopen(pool *p, char *name, char *mode)
87 88 89 90 91 92 93 94 95 96 97
{
  FILE *f = fopen(name, mode);

  if (f)
    {
      struct rfile *r = ralloc(p, &rf_class);
      r->f = f;
    }
  return f;
}

98 99 100 101 102
/**
 * DOC: Timers
 *
 * Timers are resources which represent a wish of a module to call
 * a function at the specified time. The platform dependent code
Martin Mareš's avatar
Martin Mareš committed
103
 * doesn't guarantee exact timing, only that a timer function
104 105
 * won't be called before the requested time.
 *
106 107 108 109 110
 * In BIRD, time is represented by values of the &bird_clock_t type
 * which are integral numbers interpreted as a relative number of seconds since
 * some fixed time point in past. The current time can be read
 * from variable @now with reasonable accuracy and is monotonic. There is also
 * a current 'absolute' time in variable @now_real reported by OS.
111 112 113 114 115
 *
 * Each timer is described by a &timer structure containing a pointer
 * to the handler function (@hook), data private to this function (@data),
 * time the function should be called at (@expires, 0 for inactive timers),
 * for the other fields see |timer.h|.
116 117 118 119 120 121 122
 */

#define NEAR_TIMER_LIMIT 4

static list near_timers, far_timers;
static bird_clock_t first_far_timer = TIME_INFINITY;

123 124
/* now must be different from 0, because 0 is a special value in timer->expires */
bird_clock_t now = 1, now_real;
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

static void
update_times_plain(void)
{
  bird_clock_t new_time = time(NULL);
  int delta = new_time - now_real;

  if ((delta >= 0) && (delta < 60))
    now += delta;
  else if (now_real != 0)
   log(L_WARN "Time jump, delta %d s", delta);

  now_real = new_time;
}

static void
update_times_gettime(void)
{
  struct timespec ts;
  int rv;

  rv = clock_gettime(CLOCK_MONOTONIC, &ts);
  if (rv != 0)
    die("clock_gettime: %m");

  if (ts.tv_sec != now) {
    if (ts.tv_sec < now)
      log(L_ERR "Monotonic timer is broken");

    now = ts.tv_sec;
    now_real = time(NULL);
  }
}

static int clock_monotonic_available;

static inline void
update_times(void)
{
  if (clock_monotonic_available)
    update_times_gettime();
  else
    update_times_plain();
}

static inline void
init_times(void)
{
 struct timespec ts;
 clock_monotonic_available = (clock_gettime(CLOCK_MONOTONIC, &ts) == 0);
 if (!clock_monotonic_available)
   log(L_WARN "Monotonic timer is missing");
}

179 180 181 182 183 184 185 186 187 188 189 190 191 192

static void
tm_free(resource *r)
{
  timer *t = (timer *) r;

  tm_stop(t);
}

static void
tm_dump(resource *r)
{
  timer *t = (timer *) r;

193
  debug("(code %p, data %p, ", t->hook, t->data);
194 195 196 197
  if (t->randomize)
    debug("rand %d, ", t->randomize);
  if (t->recurrent)
    debug("recur %d, ", t->recurrent);
198 199 200 201 202 203 204 205 206 207
  if (t->expires)
    debug("expires in %d sec)\n", t->expires - now);
  else
    debug("inactive)\n");
}

static struct resclass tm_class = {
  "Timer",
  sizeof(timer),
  tm_free,
208
  tm_dump,
209
  NULL,
210
  NULL
211 212
};

213 214 215 216 217 218 219 220
/**
 * tm_new - create a timer
 * @p: pool
 *
 * This function creates a new timer resource and returns
 * a pointer to it. To use the timer, you need to fill in
 * the structure fields and call tm_start() to start timing.
 */
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
timer *
tm_new(pool *p)
{
  timer *t = ralloc(p, &tm_class);
  return t;
}

static inline void
tm_insert_near(timer *t)
{
  node *n = HEAD(near_timers);

  while (n->next && (SKIP_BACK(timer, n, n)->expires < t->expires))
    n = n->next;
  insert_node(&t->n, n->prev);
}

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
/**
 * tm_start - start a timer
 * @t: timer
 * @after: number of seconds the timer should be run after
 *
 * This function schedules the hook function of the timer to
 * be called after @after seconds. If the timer has been already
 * started, it's @expire time is replaced by the new value.
 *
 * You can have set the @randomize field of @t, the timeout
 * will be increased by a random number of seconds chosen
 * uniformly from range 0 .. @randomize.
 *
 * You can call tm_start() from the handler function of the timer
 * to request another run of the timer. Also, you can set the @recurrent
 * field to have the timer re-added automatically with the same timeout.
 */
255 256 257 258 259 260
void
tm_start(timer *t, unsigned after)
{
  bird_clock_t when;

  if (t->randomize)
261
    after += random() % (t->randomize + 1);
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
  when = now + after;
  if (t->expires == when)
    return;
  if (t->expires)
    rem_node(&t->n);
  t->expires = when;
  if (after <= NEAR_TIMER_LIMIT)
    tm_insert_near(t);
  else
    {
      if (!first_far_timer || first_far_timer > when)
	first_far_timer = when;
      add_tail(&far_timers, &t->n);
    }
}

278 279 280 281 282 283 284
/**
 * tm_stop - stop a timer
 * @t: timer
 *
 * This function stops a timer. If the timer is already stopped,
 * nothing happens.
 */
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
void
tm_stop(timer *t)
{
  if (t->expires)
    {
      rem_node(&t->n);
      t->expires = 0;
    }
}

static void
tm_dump_them(char *name, list *l)
{
  node *n;
  timer *t;

  debug("%s timers:\n", name);
  WALK_LIST(n, *l)
    {
      t = SKIP_BACK(timer, n, n);
      debug("%p ", t);
      tm_dump(&t->r);
    }
  debug("\n");
}

void
tm_dump_all(void)
{
  tm_dump_them("Near", &near_timers);
  tm_dump_them("Far", &far_timers);
}

static inline time_t
tm_first_shot(void)
{
  time_t x = first_far_timer;

  if (!EMPTY_LIST(near_timers))
    {
      timer *t = SKIP_BACK(timer, n, HEAD(near_timers));
      if (t->expires < x)
	x = t->expires;
    }
  return x;
}

static void
tm_shot(void)
{
  timer *t;
  node *n, *m;

  if (first_far_timer <= now)
    {
340
      bird_clock_t limit = now + NEAR_TIMER_LIMIT;
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
      first_far_timer = TIME_INFINITY;
      n = HEAD(far_timers);
      while (m = n->next)
	{
	  t = SKIP_BACK(timer, n, n);
	  if (t->expires <= limit)
	    {
	      rem_node(n);
	      tm_insert_near(t);
	    }
	  else if (t->expires < first_far_timer)
	    first_far_timer = t->expires;
	  n = m;
	}
    }
  while ((n = HEAD(near_timers)) -> next)
    {
358
      int delay;
359 360 361 362
      t = SKIP_BACK(timer, n, n);
      if (t->expires > now)
	break;
      rem_node(n);
363
      delay = t->expires - now;
364
      t->expires = 0;
365 366 367 368 369 370 371
      if (t->recurrent)
	{
	  int i = t->recurrent - delay;
	  if (i < 0)
	    i = 0;
	  tm_start(t, i);
	}
372 373 374 375
      t->hook(t);
    }
}

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
/**
 * tm_parse_datetime - parse a date and time
 * @x: datetime string
 *
 * tm_parse_datetime() takes a textual representation of
 * a date and time (dd-mm-yyyy hh:mm:ss)
 * and converts it to the corresponding value of type &bird_clock_t.
 */
bird_clock_t
tm_parse_datetime(char *x)
{
  struct tm tm;
  int n;
  time_t t;

  if (sscanf(x, "%d-%d-%d %d:%d:%d%n", &tm.tm_mday, &tm.tm_mon, &tm.tm_year, &tm.tm_hour, &tm.tm_min, &tm.tm_sec, &n) != 6 || x[n])
    return tm_parse_date(x);
  tm.tm_mon--;
  tm.tm_year -= 1900;
  t = mktime(&tm);
  if (t == (time_t) -1)
    return 0;
  return t;
}
400 401 402 403 404 405 406
/**
 * tm_parse_date - parse a date
 * @x: date string
 *
 * tm_parse_date() takes a textual representation of a date (dd-mm-yyyy)
 * and converts it to the corresponding value of type &bird_clock_t.
 */
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
bird_clock_t
tm_parse_date(char *x)
{
  struct tm tm;
  int n;
  time_t t;

  if (sscanf(x, "%d-%d-%d%n", &tm.tm_mday, &tm.tm_mon, &tm.tm_year, &n) != 3 || x[n])
    return 0;
  tm.tm_mon--;
  tm.tm_year -= 1900;
  tm.tm_hour = tm.tm_min = tm.tm_sec = 0;
  t = mktime(&tm);
  if (t == (time_t) -1)
    return 0;
  return t;
}

425 426
static void
tm_format_reltime(char *x, struct tm *tm, bird_clock_t delta)
427
{
428 429
  static char *month_names[12] = { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
				   "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
430

431 432 433 434 435 436
  if (delta < 20*3600)
    bsprintf(x, "%02d:%02d", tm->tm_hour, tm->tm_min);
  else if (delta < 360*86400)
    bsprintf(x, "%s%02d", month_names[tm->tm_mon], tm->tm_mday);
  else
    bsprintf(x, "%d", tm->tm_year+1900);
437 438
}

439 440
#include "conf/conf.h"

441 442 443 444 445
/**
 * tm_format_datetime - convert date and time to textual representation
 * @x: destination buffer of size %TM_DATETIME_BUFFER_SIZE
 * @t: time
 *
446 447
 * This function formats the given relative time value @t to a textual
 * date/time representation (dd-mm-yyyy hh:mm:ss) in real time.
448
 */
449
void
450
tm_format_datetime(char *x, struct timeformat *fmt_spec, bird_clock_t t)
451
{
452
  const char *fmt_used;
453
  struct tm *tm;
454 455
  bird_clock_t delta = now - t;
  t = now_real - delta;
456 457
  tm = localtime(&t);

458 459
  if (fmt_spec->fmt1 == NULL)
    return tm_format_reltime(x, tm, delta);
460

461 462
  if ((fmt_spec->limit == 0) || (delta < fmt_spec->limit))
    fmt_used = fmt_spec->fmt1;
463
  else
464 465 466 467 468
    fmt_used = fmt_spec->fmt2;

  int rv = strftime(x, TM_DATETIME_BUFFER_SIZE, fmt_used, tm);
  if (((rv == 0) && fmt_used[0]) || (rv == TM_DATETIME_BUFFER_SIZE))
    strcpy(x, "<too-long>");
469 470
}

471 472 473 474 475 476 477 478 479 480
/**
 * DOC: Sockets
 *
 * Socket resources represent network connections. Their data structure (&socket)
 * contains a lot of fields defining the exact type of the socket, the local and
 * remote addresses and ports, pointers to socket buffers and finally pointers to
 * hook functions to be called when new data have arrived to the receive buffer
 * (@rx_hook), when the contents of the transmit buffer have been transmitted
 * (@tx_hook) and when an error or connection close occurs (@err_hook).
 *
481
 * Freeing of sockets from inside socket hooks is perfectly safe.
482 483
 */

484 485 486 487
#ifndef SOL_IP
#define SOL_IP IPPROTO_IP
#endif

488 489 490 491
#ifndef SOL_IPV6
#define SOL_IPV6 IPPROTO_IPV6
#endif

492
static list sock_list;
493
static struct birdsock *current_sock;
494
static struct birdsock *stored_sock;
495 496 497 498 499 500 501 502 503 504
static int sock_recalc_fdsets_p;

static inline sock *
sk_next(sock *s)
{
  if (!s->n.next->next)
    return NULL;
  else
    return SKIP_BACK(sock, n, s->n.next);
}
505 506

static void
507
sk_alloc_bufs(sock *s)
508
{
509 510 511 512 513 514 515
  if (!s->rbuf && s->rbsize)
    s->rbuf = s->rbuf_alloc = xmalloc(s->rbsize);
  s->rpos = s->rbuf;
  if (!s->tbuf && s->tbsize)
    s->tbuf = s->tbuf_alloc = xmalloc(s->tbsize);
  s->tpos = s->ttx = s->tbuf;
}
516

517 518 519
static void
sk_free_bufs(sock *s)
{
520
  if (s->rbuf_alloc)
521 522 523 524
    {
      xfree(s->rbuf_alloc);
      s->rbuf = s->rbuf_alloc = NULL;
    }
525
  if (s->tbuf_alloc)
526 527 528 529 530 531 532 533 534 535 536 537
    {
      xfree(s->tbuf_alloc);
      s->tbuf = s->tbuf_alloc = NULL;
    }
}

static void
sk_free(resource *r)
{
  sock *s = (sock *) r;

  sk_free_bufs(s);
538
  if (s->fd >= 0)
539 540
    {
      close(s->fd);
541 542
      if (s == current_sock)
	current_sock = sk_next(s);
543 544
      if (s == stored_sock)
	stored_sock = sk_next(s);
545
      rem_node(&s->n);
546
      sock_recalc_fdsets_p = 1;
547
    }
548 549
}

550 551 552 553 554 555 556
void
sk_reallocate(sock *s)
{
  sk_free_bufs(s);
  sk_alloc_bufs(s);
}

557 558 559 560
static void
sk_dump(resource *r)
{
  sock *s = (sock *) r;
561
  static char *sk_type_names[] = { "TCP<", "TCP>", "TCP", "UDP", "UDP/MC", "IP", "IP/MC", "MAGIC", "UNIX<", "UNIX", "DEL!" };
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578

  debug("(%s, ud=%p, sa=%08x, sp=%d, da=%08x, dp=%d, tos=%d, ttl=%d, if=%s)\n",
	sk_type_names[s->type],
	s->data,
	s->saddr,
	s->sport,
	s->daddr,
	s->dport,
	s->tos,
	s->ttl,
	s->iface ? s->iface->name : "none");
}

static struct resclass sk_class = {
  "Socket",
  sizeof(sock),
  sk_free,
579
  sk_dump,
580
  NULL,
581
  NULL
582 583
};

584 585 586 587 588 589 590 591
/**
 * sk_new - create a socket
 * @p: pool
 *
 * This function creates a new socket resource. If you want to use it,
 * you need to fill in all the required fields of the structure and
 * call sk_open() to do the actual opening of the socket.
 */
592 593 594 595 596
sock *
sk_new(pool *p)
{
  sock *s = ralloc(p, &sk_class);
  s->pool = p;
597
  // s->saddr = s->daddr = IPA_NONE;
598 599 600 601 602
  s->tos = s->ttl = -1;
  s->fd = -1;
  return s;
}

603 604 605 606 607 608
static void
sk_insert(sock *s)
{
  add_tail(&sock_list, &s->n);
  sock_recalc_fdsets_p = 1;
}
609

610 611
#ifdef IPV6

Ondřej Zajíček's avatar
Ondřej Zajíček committed
612 613
void
fill_in_sockaddr(struct sockaddr_in6 *sa, ip_addr a, struct iface *ifa, unsigned port)
614
{
615
  memset(sa, 0, sizeof (struct sockaddr_in6));
616 617 618
  sa->sin6_family = AF_INET6;
  sa->sin6_port = htons(port);
  sa->sin6_flowinfo = 0;
619 620 621
#ifdef HAVE_SIN_LEN
  sa->sin6_len = sizeof(struct sockaddr_in6);
#endif
622 623
  set_inaddr(&sa->sin6_addr, a);

624 625
  if (ifa && ipa_has_link_scope(a))
    sa->sin6_scope_id = ifa->index;
626 627
}

Ondřej Zajíček's avatar
Ondřej Zajíček committed
628
void
629
get_sockaddr(struct sockaddr_in6 *sa, ip_addr *a, struct iface **ifa, unsigned *port, int check)
630
{
631 632
  if (check && sa->sin6_family != AF_INET6)
    bug("get_sockaddr called for wrong address family (%d)", sa->sin6_family);
633 634 635 636
  if (port)
    *port = ntohs(sa->sin6_port);
  memcpy(a, &sa->sin6_addr, sizeof(*a));
  ipa_ntoh(*a);
637 638 639

  if (ifa && ipa_has_link_scope(*a))
    *ifa = if_find_by_index(sa->sin6_scope_id);
640 641 642 643
}

#else

Ondřej Zajíček's avatar
Ondřej Zajíček committed
644 645
void
fill_in_sockaddr(struct sockaddr_in *sa, ip_addr a, struct iface *ifa, unsigned port)
646
{
647
  memset (sa, 0, sizeof (struct sockaddr_in));
648 649
  sa->sin_family = AF_INET;
  sa->sin_port = htons(port);
650 651 652
#ifdef HAVE_SIN_LEN
  sa->sin_len = sizeof(struct sockaddr_in);
#endif
653 654 655
  set_inaddr(&sa->sin_addr, a);
}

Ondřej Zajíček's avatar
Ondřej Zajíček committed
656
void
657
get_sockaddr(struct sockaddr_in *sa, ip_addr *a, struct iface **ifa, unsigned *port, int check)
658
{
659 660
  if (check && sa->sin_family != AF_INET)
    bug("get_sockaddr called for wrong address family (%d)", sa->sin_family);
661 662
  if (port)
    *port = ntohs(sa->sin_port);
663
  memcpy(a, &sa->sin_addr.s_addr, sizeof(*a));
664
  ipa_ntoh(*a);
665 666
}

667 668
#endif

669 670 671 672 673 674 675

#ifdef IPV6

/* PKTINFO handling is also standardized in IPv6 */
#define CMSG_RX_SPACE CMSG_SPACE(sizeof(struct in6_pktinfo))
#define CMSG_TX_SPACE CMSG_SPACE(sizeof(struct in6_pktinfo))

676 677 678 679 680 681 682 683 684 685
/*
 * RFC 2292 uses IPV6_PKTINFO for both the socket option and the cmsg
 * type, RFC 3542 changed the socket option to IPV6_RECVPKTINFO. If we
 * don't have IPV6_RECVPKTINFO we suppose the OS implements the older
 * RFC and we use IPV6_PKTINFO.
 */
#ifndef IPV6_RECVPKTINFO
#define IPV6_RECVPKTINFO IPV6_PKTINFO
#endif

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
static char *
sysio_register_cmsgs(sock *s)
{
  int ok = 1;
  if ((s->flags & SKF_LADDR_RX) &&
      setsockopt(s->fd, IPPROTO_IPV6, IPV6_RECVPKTINFO, &ok, sizeof(ok)) < 0)
    return "IPV6_RECVPKTINFO";

  return NULL;
}

static void
sysio_process_rx_cmsgs(sock *s, struct msghdr *msg)
{
  struct cmsghdr *cm;
  struct in6_pktinfo *pi = NULL;

  if (!(s->flags & SKF_LADDR_RX))
    return;

  for (cm = CMSG_FIRSTHDR(msg); cm != NULL; cm = CMSG_NXTHDR(msg, cm))
    {
      if (cm->cmsg_level == IPPROTO_IPV6 && cm->cmsg_type == IPV6_PKTINFO)
	pi = (struct in6_pktinfo *) CMSG_DATA(cm);
    }

  if (!pi)
    {
      s->laddr = IPA_NONE;
      s->lifindex = 0;
      return;
    }

  get_inaddr(&s->laddr, &pi->ipi6_addr);
  s->lifindex = pi->ipi6_ifindex;
  return;
}

Ondřej Zajíček's avatar
Ondřej Zajíček committed
724
/*
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
static void
sysio_prepare_tx_cmsgs(sock *s, struct msghdr *msg, void *cbuf, size_t cbuflen)
{
  struct cmsghdr *cm;
  struct in6_pktinfo *pi;

  if (!(s->flags & SKF_LADDR_TX))
    return;

  msg->msg_control = cbuf;
  msg->msg_controllen = cbuflen;

  cm = CMSG_FIRSTHDR(msg);
  cm->cmsg_level = IPPROTO_IPV6;
  cm->cmsg_type = IPV6_PKTINFO;
  cm->cmsg_len = CMSG_LEN(sizeof(*pi));

  pi = (struct in6_pktinfo *) CMSG_DATA(cm);
  set_inaddr(&pi->ipi6_addr, s->saddr);
  pi->ipi6_ifindex = s->iface ? s->iface->index : 0;

  msg->msg_controllen = cm->cmsg_len;
  return;
}
Ondřej Zajíček's avatar
Ondřej Zajíček committed
749
*/
750 751
#endif

752 753 754 755
static char *
sk_set_ttl_int(sock *s)
{
#ifdef IPV6
756
  if (setsockopt(s->fd, SOL_IPV6, IPV6_UNICAST_HOPS, &s->ttl, sizeof(s->ttl)) < 0)
757 758 759 760 761
    return "IPV6_UNICAST_HOPS";
#else
  if (setsockopt(s->fd, SOL_IP, IP_TTL, &s->ttl, sizeof(s->ttl)) < 0)
    return "IP_TTL";
#ifdef CONFIG_UNIX_DONTROUTE
762
  int one = 1;
763 764 765 766 767 768 769
  if (s->ttl == 1 && setsockopt(s->fd, SOL_SOCKET, SO_DONTROUTE, &one, sizeof(one)) < 0)
    return "SO_DONTROUTE";
#endif 
#endif
  return NULL;
}

770 771 772
#define ERR(x) do { err = x; goto bad; } while(0)
#define WARN(x) log(L_WARN "sk_setup: %s: %m", x)

773 774 775 776
static char *
sk_setup(sock *s)
{
  int fd = s->fd;
777
  char *err = NULL;
778 779 780

  if (fcntl(fd, F_SETFL, O_NONBLOCK) < 0)
    ERR("fcntl(O_NONBLOCK)");
781 782
  if (s->type == SK_UNIX)
    return NULL;
783
#ifndef IPV6
784
  if ((s->tos >= 0) && setsockopt(fd, SOL_IP, IP_TOS, &s->tos, sizeof(s->tos)) < 0)
785
    WARN("IP_TOS");
786
#endif
787 788 789 790 791 792 793

#ifdef IPV6
  int v = 1;
  if ((s->flags & SKF_V6ONLY) && setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, &v, sizeof(v)) < 0)
    WARN("IPV6_V6ONLY");
#endif

794 795 796
  if (s->ttl >= 0)
    err = sk_set_ttl_int(s);

797
  sysio_register_cmsgs(s);
798 799 800 801
bad:
  return err;
}

802
/**
803
 * sk_set_ttl - set transmit TTL for given socket.
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
 * @s: socket
 * @ttl: TTL value
 *
 * Set TTL for already opened connections when TTL was not set before.
 * Useful for accepted connections when different ones should have 
 * different TTL.
 *
 * Result: 0 for success, -1 for an error.
 */

int
sk_set_ttl(sock *s, int ttl)
{
  char *err;

  s->ttl = ttl;
  if (err = sk_set_ttl_int(s))
    log(L_ERR "sk_set_ttl: %s: %m", err);

  return (err ? -1 : 0);
}

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
/**
 * sk_set_min_ttl - set minimal accepted TTL for given socket.
 * @s: socket
 * @ttl: TTL value
 *
 * Can be used in TTL security implementation
 *
 * Result: 0 for success, -1 for an error.
 */

int
sk_set_min_ttl(sock *s, int ttl)
{
  int err;
#ifdef IPV6
  err = sk_set_min_ttl6(s, ttl);
#else
  err = sk_set_min_ttl4(s, ttl);
#endif

  return err;
}
848 849 850 851 852

/**
 * sk_set_md5_auth - add / remove MD5 security association for given socket.
 * @s: socket
 * @a: IP address of the other side
853
 * @ifa: Interface for link-local IP address
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
 * @passwd: password used for MD5 authentication
 *
 * In TCP MD5 handling code in kernel, there is a set of pairs
 * (address, password) used to choose password according to
 * address of the other side. This function is useful for
 * listening socket, for active sockets it is enough to set
 * s->password field.
 *
 * When called with passwd != NULL, the new pair is added,
 * When called with passwd == NULL, the existing pair is removed.
 *
 * Result: 0 for success, -1 for an error.
 */

int
869
sk_set_md5_auth(sock *s, ip_addr a, struct iface *ifa, char *passwd)
870 871
{
  sockaddr sa;
872
  fill_in_sockaddr(&sa, a, ifa, 0);
873 874 875
  return sk_set_md5_auth_int(s, &sa, passwd);
}

876 877 878 879
int
sk_set_broadcast(sock *s, int enable)
{
  if (setsockopt(s->fd, SOL_SOCKET, SO_BROADCAST, &enable, sizeof(enable)) < 0)
880 881 882 883 884 885
    {
      log(L_ERR "sk_set_broadcast: SO_BROADCAST: %m");
      return -1;
    }

  return 0;
886 887 888 889 890
}


#ifdef IPV6

891 892 893 894 895 896 897 898 899 900 901 902
int
sk_set_ipv6_checksum(sock *s, int offset)
{
  if (setsockopt(s->fd, IPPROTO_IPV6, IPV6_CHECKSUM, &offset, sizeof(offset)) < 0)
    {
      log(L_ERR "sk_set_ipv6_checksum: IPV6_CHECKSUM: %m");
      return -1;
    }

  return 0;
}

903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
int
sk_set_icmp_filter(sock *s, int p1, int p2)
{
  /* a bit of lame interface, but it is here only for Radv */
  struct icmp6_filter f;

  ICMP6_FILTER_SETBLOCKALL(&f);
  ICMP6_FILTER_SETPASS(p1, &f);
  ICMP6_FILTER_SETPASS(p2, &f);

  if (setsockopt(s->fd, IPPROTO_ICMPV6, ICMP6_FILTER, &f, sizeof(f)) < 0)
    {
      log(L_ERR "sk_setup_icmp_filter: ICMP6_FILTER: %m");
      return -1;
    }

  return 0;
}

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
int
sk_setup_multicast(sock *s)
{
  char *err;
  int zero = 0;
  int index;

  ASSERT(s->iface && s->iface->addr);

  index = s->iface->index;
  if (setsockopt(s->fd, SOL_IPV6, IPV6_MULTICAST_HOPS, &s->ttl, sizeof(s->ttl)) < 0)
    ERR("IPV6_MULTICAST_HOPS");
  if (setsockopt(s->fd, SOL_IPV6, IPV6_MULTICAST_LOOP, &zero, sizeof(zero)) < 0)
    ERR("IPV6_MULTICAST_LOOP");
  if (setsockopt(s->fd, SOL_IPV6, IPV6_MULTICAST_IF, &index, sizeof(index)) < 0)
    ERR("IPV6_MULTICAST_IF");

939 940 941
  if (err = sysio_bind_to_iface(s))
    goto bad;

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
  return 0;

bad:
  log(L_ERR "sk_setup_multicast: %s: %m", err);
  return -1;
}

int
sk_join_group(sock *s, ip_addr maddr)
{
  struct ipv6_mreq mreq;
	
  set_inaddr(&mreq.ipv6mr_multiaddr, maddr);

#ifdef CONFIG_IPV6_GLIBC_20
  mreq.ipv6mr_ifindex = s->iface->index;
#else
  mreq.ipv6mr_interface = s->iface->index;
#endif

962
  if (setsockopt(s->fd, SOL_IPV6, IPV6_JOIN_GROUP, &mreq, sizeof(mreq)) < 0)
963
    {
964
      log(L_ERR "sk_join_group: IPV6_JOIN_GROUP: %m");
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
      return -1;
    }

  return 0;
}

int
sk_leave_group(sock *s, ip_addr maddr)
{
  struct ipv6_mreq mreq;
	
  set_inaddr(&mreq.ipv6mr_multiaddr, maddr);

#ifdef CONFIG_IPV6_GLIBC_20
  mreq.ipv6mr_ifindex = s->iface->index;
#else
  mreq.ipv6mr_interface = s->iface->index;
#endif

984
  if (setsockopt(s->fd, SOL_IPV6, IPV6_LEAVE_GROUP, &mreq, sizeof(mreq)) < 0)
985
    {
986
      log(L_ERR "sk_leave_group: IPV6_LEAVE_GROUP: %m");
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
      return -1;
    }

  return 0;
}

#else /* IPV4 */

int
sk_setup_multicast(sock *s)
{
  char *err;

  ASSERT(s->iface && s->iface->addr);

  if (err = sysio_setup_multicast(s))
    {
      log(L_ERR "sk_setup_multicast: %s: %m", err);
      return -1;
    }

  return 0;
}

int
sk_join_group(sock *s, ip_addr maddr)
{
 char *err;

 if (err = sysio_join_group(s, maddr))
    {
      log(L_ERR "sk_join_group: %s: %m", err);
      return -1;
    }

  return 0;
}

int
sk_leave_group(sock *s, ip_addr maddr)
{
 char *err;

 if (err = sysio_leave_group(s, maddr))
    {
      log(L_ERR "sk_leave_group: %s: %m", err);
      return -1;
    }

  return 0;
}

#endif 

1041

1042
static void
1043 1044
sk_tcp_connected(sock *s)
{
1045 1046 1047
  sockaddr lsa;
  int lsa_len = sizeof(lsa);
  if (getsockname(s->fd, (struct sockaddr *) &lsa, &lsa_len) == 0)
1048
    get_sockaddr(&lsa, &s->saddr, &s->iface, &s->sport, 1);
1049

1050 1051
  s->type = SK_TCP;
  sk_alloc_bufs(s);
1052
  s->tx_hook(s);
1053 1054
}

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
static int
sk_passive_connected(sock *s, struct sockaddr *sa, int al, int type)
{
  int fd = accept(s->fd, sa, &al);
  if (fd >= 0)
    {
      sock *t = sk_new(s->pool);
      char *err;
      t->type = type;
      t->fd = fd;
1065 1066 1067 1068 1069
      t->ttl = s->ttl;
      t->tos = s->tos;
      t->rbsize = s->rbsize;
      t->tbsize = s->tbsize;
      if (type == SK_TCP)
1070 1071 1072 1073
	{
	  sockaddr lsa;
	  int lsa_len = sizeof(lsa);
	  if (getsockname(fd, (struct sockaddr *) &lsa, &lsa_len) == 0)
1074
	    get_sockaddr(&lsa, &t->saddr, &t->iface, &t->sport, 1);
1075

1076
	  get_sockaddr((sockaddr *) sa, &t->daddr, &t->iface, &t->dport, 1);
1077
	}
1078
      sk_insert(t);
1079 1080 1081
      if (err = sk_setup(t))
	{
	  log(L_ERR "Incoming connection: %s: %m", err);
1082 1083
	  rfree(t);
	  return 1;
1084 1085
	}
      sk_alloc_bufs(t);
1086
      s->rx_hook(t, 0);
1087 1088 1089 1090
      return 1;
    }
  else if (errno != EINTR && errno != EAGAIN)
    {
1091
      s->err_hook(s, errno);
1092 1093 1094 1095
    }
  return 0;
}

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
/**
 * sk_open - open a socket
 * @s: socket
 *
 * This function takes a socket resource created by sk_new() and
 * initialized by the user and binds a corresponding network connection
 * to it.
 *
 * Result: 0 for success, -1 for an error.
 */
1106 1107 1108
int
sk_open(sock *s)
{
1109
  int fd;
1110
  sockaddr sa;
1111 1112 1113 1114 1115 1116 1117 1118
  int one = 1;
  int type = s->type;
  int has_src = ipa_nonzero(s->saddr) || s->sport;
  char *err;

  switch (type)
    {
    case SK_TCP_ACTIVE:
1119 1120
      s->ttx = "";			/* Force s->ttx != s->tpos */
      /* Fall thru */
1121
    case SK_TCP_PASSIVE:
1122
      fd = socket(BIRD_PF, SOCK_STREAM, IPPROTO_TCP);
1123 1124
      break;
    case SK_UDP:
1125
      fd = socket(BIRD_PF, SOCK_DGRAM, IPPROTO_UDP);
1126 1127
      break;
    case SK_IP:
1128
      fd = socket(BIRD_PF, SOCK_RAW, s->dport);
1129
      break;
1130 1131 1132
    case SK_MAGIC:
      fd = s->fd;
      break;
1133
    default:
1134
      bug("sk_open() called for invalid sock type %d", type);
1135 1136 1137 1138 1139 1140 1141
    }
  if (fd < 0)
    die("sk_open: socket: %m");
  s->fd = fd;

  if (err = sk_setup(s))
    goto bad;
1142

1143 1144 1145 1146
  if (has_src)
    {
      int port;

1147
      if (type == SK_IP)
1148 1149 1150 1151 1152 1153 1154
	port = 0;
      else
	{
	  port = s->sport;
	  if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)) < 0)
	    ERR("SO_REUSEADDR");
	}
1155
      fill_in_sockaddr(&sa, s->saddr, s->iface, port);
1156 1157 1158
      if (bind(fd, (struct sockaddr *) &sa, sizeof(sa)) < 0)
	ERR("bind");
    }
1159
  fill_in_sockaddr(&sa, s->daddr, s->iface, s->dport);
1160 1161 1162 1163 1164 1165 1166 1167

  if (s->password)
    {
      int rv = sk_set_md5_auth_int(s, &sa, s->password);
      if (rv < 0)
	goto bad_no_log;
    }

1168 1169 1170 1171 1172
  switch (type)
    {
    case SK_TCP_ACTIVE:
      if (connect(fd, (struct sockaddr *) &sa, sizeof(sa)) >= 0)
	sk_tcp_connected(s);
1173
      else if (errno != EINTR && errno != EAGAIN && errno != EINPROGRESS &&
1174
	       errno != ECONNREFUSED && errno != EHOSTUNREACH && errno != ENETUNREACH)
1175 1176 1177 1178 1179 1180
	ERR("connect");
      break;
    case SK_TCP_PASSIVE:
      if (listen(fd, 8))
	ERR("listen");
      break;
1181 1182 1183
    case SK_MAGIC:
      break;
    default:
1184
      sk_alloc_bufs(s);
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
#ifdef IPV6
#ifdef IPV6_MTU_DISCOVER
      {
	int dont = IPV6_PMTUDISC_DONT;
	if (setsockopt(fd, SOL_IPV6, IPV6_MTU_DISCOVER, &dont, sizeof(dont)) < 0)
	  ERR("IPV6_MTU_DISCOVER");
      }
#endif
#else
#ifdef IP_PMTUDISC
      {
	int dont = IP_PMTUDISC_DONT;
	if (setsockopt(fd, SOL_IP, IP_PMTUDISC, &dont, sizeof(dont)) < 0)
	  ERR("IP_PMTUDISC");
      }
#endif
#endif
1202 1203
    }

1204
  sk_insert(s);
1205 1206 1207 1208
  return 0;

bad:
  log(L_ERR "sk_open: %s: %m", err);
1209
bad_no_log:
1210 1211 1212 1213 1214
  close(fd);
  s->fd = -1;
  return -1;
}

1215
void
1216 1217 1218 1219 1220 1221 1222 1223
sk_open_unix(sock *s, char *name)
{
  int fd;
  struct sockaddr_un sa;
  char *err;

  fd = socket(AF_UNIX, SOCK_STREAM, 0);
  if (fd < 0)
1224
    ERR("socket");
1225 1226 1227 1228
  s->fd = fd;
  if (err = sk_setup(s))
    goto bad;
  unlink(name);
1229

1230
  /* Path length checked in test_old_bird() */
1231
  sa.sun_family = AF_UNIX;
1232
  strcpy(sa.sun_path, name);
1233
  if (bind(fd, (struct sockaddr *) &sa, SUN_LEN(&sa)) < 0)
1234 1235 1236
    ERR("bind");
  if (listen(fd, 8))
    ERR("listen");
1237
  sk_insert(s);
1238
  return;
1239

1240
 bad:
1241
  log(L_ERR "sk_open_unix: %s: %m", err);
1242
  die("Unable to create control socket %s", name);
1243 1244
}

1245 1246
static inline void reset_tx_buffer(sock *s) { s->ttx = s->tpos = s->tbuf; }

1247 1248 1249 1250 1251 1252 1253 1254
static int
sk_maybe_write(sock *s)
{
  int e;

  switch (s->type)
    {
    case SK_TCP:
1255
    case SK_MAGIC:
1256
    case SK_UNIX:
1257 1258 1259 1260 1261 1262 1263
      while (s->ttx != s->tpos)
	{
	  e = write(s->fd, s->ttx, s->tpos - s->ttx);
	  if (e < 0)
	    {
	      if (errno != EINTR && errno != EAGAIN)
		{
1264
		  reset_tx_buffer(s);
1265 1266
		  /* EPIPE is just a connection close notification during TX */
		  s->err_hook(s, (errno != EPIPE) ? errno : 0);
1267 1268 1269 1270 1271 1272
		  return -1;
		}
	      return 0;
	    }
	  s->ttx += e;
	}
1273
      reset_tx_buffer(s);
1274 1275 1276 1277 1278 1279
      return 1;
    case SK_UDP:
    case SK_IP:
      {
	if (s->tbuf == s->tpos)
	  return 1;
1280

1281
	sockaddr sa;
1282
	fill_in_sockaddr(&sa, s->daddr, s->iface, s->dport);
1283 1284

	struct iovec iov = {s->tbuf, s->tpos - s->tbuf};
Ondřej Zajíček's avatar
Ondřej Zajíček committed
1285
	// byte cmsg_buf[CMSG_TX_SPACE];
1286 1287 1288 1289 1290

	struct msghdr msg = {
	  .msg_name = &sa,
	  .msg_namelen = sizeof(sa),
	  .msg_iov = &iov,
1291
	  .msg_iovlen = 1};
1292

Ondřej Zajíček's avatar
Ondřej Zajíček committed
1293
	// sysio_prepare_tx_cmsgs(s, &msg, cmsg_buf, sizeof(cmsg_buf));
1294 1295
	e = sendmsg(s->fd, &msg, 0);

1296 1297 1298 1299
	if (e < 0)
	  {
	    if (errno != EINTR && errno != EAGAIN)
	      {
1300
		reset_tx_buffer(s);
1301
		s->err_hook(s, errno);
1302 1303 1304 1305
		return -1;
	      }
	    return 0;
	  }
1306
	reset_tx_buffer(s);
1307 1308 1309
	return 1;
      }
    default:
1310
      bug("sk_maybe_write: unknown socket type %d", s->type);
1311 1312 1313
    }
}

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
int
sk_rx_ready(sock *s)
{
  fd_set rd, wr;
  struct timeval timo;
  int rv;

  FD_ZERO(&rd);
  FD_ZERO(&wr);
  FD_SET(s->fd, &rd);

  timo.tv_sec = 0;
  timo.tv_usec = 0;

 redo:
  rv = select(s->fd+1, &rd, &wr, NULL, &timo);
  
  if ((rv < 0) && (errno == EINTR || errno == EAGAIN))
    goto redo;

  return rv;
}

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
/**
 * sk_send - send data to a socket
 * @s: socket
 * @len: number of bytes to send
 *
 * This function sends @len bytes of data prepared in the
 * transmit buffer of the socket @s to the network connection.
 * If the packet can be sent immediately, it does so and returns
 * 1, else it queues the packet for later processing, returns 0
 * and calls the @tx_hook of the socket when the tranmission
 * takes place.
 */
1349 1350 1351 1352 1353 1354 1355 1356
int
sk_send(sock *s, unsigned len)
{
  s->ttx = s->tbuf;
  s->tpos = s->tbuf + len;
  return sk_maybe_write(s);
}

1357 1358 1359 1360 1361 1362 1363
/**
 * sk_send_to - send data to a specific destination
 * @s: socket
 * @len: number of bytes to send
 * @addr: IP address to send the packet to
 * @port: port to send the packet to
 *
1364
 * This is a sk_send() replacement for connection-less packet sockets
1365 1366
 * which allows destination of the packet to be chosen dynamically.
 */
1367 1368 1369
int
sk_send_to(sock *s, unsigned len, ip_addr addr, unsigned port)
{
1370 1371
  s->daddr = addr;
  s->dport = port;
1372 1373 1374 1375 1376
  s->ttx = s->tbuf;
  s->tpos = s->tbuf + len;
  return sk_maybe_write(s);
}

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
/*
int
sk_send_full(sock *s, unsigned len, struct iface *ifa,
	     ip_addr saddr, ip_addr daddr, unsigned dport)
{
  s->iface = ifa;
  s->saddr = saddr;
  s->daddr = daddr;
  s->dport = dport;
  s->ttx = s->tbuf;
  s->tpos = s->tbuf + len;
  return sk_maybe_write(s);
}
*/

1392 1393 1394 1395 1396 1397 1398
static int
sk_read(sock *s)
{
  switch (s->type)
    {
    case SK_TCP_PASSIVE:
      {
1399
	sockaddr sa;
1400 1401 1402 1403 1404 1405
	return sk_passive_connected(s, (struct sockaddr *) &sa, sizeof(sa), SK_TCP);
      }
    case SK_UNIX_PASSIVE:
      {
	struct sockaddr_un sa;
	return sk_passive_connected(s, (struct sockaddr *) &sa, sizeof(sa), SK_UNIX);
1406 1407
      }
    case SK_TCP:
1408
    case SK_UNIX:
1409 1410 1411 1412 1413 1414
      {
	int c = read(s->fd, s->rpos, s->rbuf + s->rbsize - s->rpos);

	if (c < 0)
	  {
	    if (errno != EINTR && errno != EAGAIN)
1415
	      s->err_hook(s, errno);
1416 1417
	  }
	else if (!c)
1418
	  s->err_hook(s, 0);
1419 1420 1421 1422
	else
	  {
	    s->rpos += c;
	    if (s->rx_hook(s, s->rpos - s->rbuf))
1423 1424 1425 1426 1427
	      {
		/* We need to be careful since the socket could have been deleted by the hook */
		if (current_sock == s)
		  s->rpos = s->rbuf;
	      }
1428 1429 1430 1431
	    return 1;
	  }
	return 0;
      }
1432 1433
    case SK_MAGIC:
      return s->rx_hook(s, 0);
1434 1435
    default:
      {
1436
	sockaddr sa;
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
	int e;

	struct iovec iov = {s->rbuf, s->rbsize};
	byte cmsg_buf[CMSG_RX_SPACE];

	struct msghdr msg = {
	  .msg_name = &sa,
	  .msg_namelen = sizeof(sa),
	  .msg_iov = &iov,
	  .msg_iovlen = 1,
	  .msg_control = cmsg_buf,
	  .msg_controllen = sizeof(cmsg_buf),
	  .msg_flags = 0};

	e = recvmsg(s->fd, &msg, 0);
1452 1453 1454 1455

	if (e < 0)
	  {
	    if (errno != EINTR && errno != EAGAIN)
1456
	      s->err_hook(s, errno);
1457 1458 1459
	    return 0;
	  }
	s->rpos = s->rbuf + e;
1460
	get_sockaddr(&sa, &s->faddr, NULL, &s->fport, 1);
1461 1462
	sysio_process_rx_cmsgs(s, &msg);

1463 1464 1465 1466 1467 1468
	s->rx_hook(s, e);
	return 1;
      }
    }
}

1469
static int
1470 1471
sk_write(sock *s)
{
1472 1473 1474 1475 1476
  switch (s->type)
    {
    case SK_TCP_ACTIVE:
      {
	sockaddr sa;
1477
	fill_in_sockaddr(&sa, s->daddr, s->iface, s->dport);
Ondřej Filip's avatar
Ondřej Filip committed
1478
	if (connect(s->fd, (struct sockaddr *) &sa, sizeof(sa)) >= 0 || errno == EISCONN)
1479 1480
	  sk_tcp_connected(s);
	else if (errno != EINTR && errno != EAGAIN && errno != EINPROGRESS)
1481
	  s->err_hook(s, errno);
1482
	return 0;
1483 1484
      }
    default:
1485 1486 1487 1488 1489 1490
      if (s->ttx != s->tpos && sk_maybe_write(s) > 0)
	{
	  s->tx_hook(s);
	  return 1;
	}
      return 0;
1491
    }
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
}

void
sk_dump_all(void)
{
  node *n;
  sock *s;

  debug("Open sockets:\n");
  WALK_LIST(n, sock_list)
    {
      s = SKIP_BACK(sock, n, n);
      debug("%p ", s);
      sk_dump(&s->r);
    }
  debug("\n");
}

#undef ERR
1511
#undef WARN
1512 1513 1514 1515 1516

/*
 *	Main I/O Loop
 */

1517 1518 1519
volatile int async_config_flag;		/* Asynchronous reconfiguration/dump scheduled */
volatile int async_dump_flag;

1520 1521 1522 1523 1524 1525
void
io_init(void)
{
  init_list(&near_timers);
  init_list(&far_timers);
  init_list(&sock_list);
1526
  init_list(&global_event_list);
1527
  krt_io_init();
1528 1529 1530
  init_times();
  update_times();
  srandom((int) now_real);
1531 1532
}

1533 1534 1535
static int short_loops = 0;
#define SHORT_LOOP_MAX 10

1536 1537 1538 1539 1540 1541
void
io_loop(void)
{
  fd_set rd, wr;
  struct timeval timo;
  time_t tout;
1542
  int hi, events;
1543
  sock *s;
1544
  node *n;
1545

1546
  sock_recalc_fdsets_p = 1;
1547 1548
  for(;;)
    {
1549
      events = ev_run_list(&global_event_list);
1550
      update_times();
1551 1552 1553 1554 1555 1556
      tout = tm_first_shot();
      if (tout <= now)
	{
	  tm_shot();
	  continue;
	}
1557 1558
      timo.tv_sec = events ? 0 : tout - now;
      timo.tv_usec = 0;
1559

1560 1561 1562 1563 1564 1565 1566
      if (sock_recalc_fdsets_p)
	{
	  sock_recalc_fdsets_p = 0;
	  FD_ZERO(&rd);
	  FD_ZERO(&wr);
	}

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
      hi = 0;
      WALK_LIST(n, sock_list)
	{
	  s = SKIP_BACK(sock, n, n);
	  if (s->rx_hook)
	    {
	      FD_SET(s->fd, &rd);
	      if (s->fd > hi)
		hi = s->fd;
	    }
1577 1578
	  else
	    FD_CLR(s->fd, &rd);
1579 1580 1581 1582 1583 1584
	  if (s->tx_hook && s->ttx != s->tpos)
	    {
	      FD_SET(s->fd, &wr);
	      if (s->fd > hi)
		hi = s->fd;
	    }
1585 1586
	  else
	    FD_CLR(s->fd, &wr);
1587 1588
	}

1589 1590 1591 1592 1593 1594 1595 1596 1597
      /*
       * Yes, this is racy. But even if the signal comes before this test
       * and entering select(), it gets caught on the next timer tick.
       */

      if (async_config_flag)
	{
	  async_config();
	  async_config_flag = 0;
1598
	  continue;
1599 1600 1601 1602 1603
	}
      if (async_dump_flag)
	{
	  async_dump();
	  async_dump_flag = 0;
1604 1605 1606 1607 1608 1609 1610
	  continue;
	}
      if (async_shutdown_flag)
	{
	  async_shutdown();
	  async_shutdown_flag = 0;
	  continue;
1611 1612 1613
	}

      /* And finally enter select() to find active sockets */
1614
      hi = select(hi+1, &rd, &wr, NULL, &timo);
1615

1616 1617 1618 1619 1620 1621 1622 1623
      if (hi < 0)
	{
	  if (errno == EINTR || errno == EAGAIN)
	    continue;
	  die("select: %m");
	}
      if (hi)
	{
1624 1625 1626
	  /* guaranteed to be non-empty */
	  current_sock = SKIP_BACK(sock, n, HEAD(sock_list));

1627
	  while (current_sock)
1628
	    {
1629 1630
	      sock *s = current_sock;
	      int e;
1631 1632 1633 1634
	      int steps;

	      steps = MAX_STEPS;
	      if ((s->type >= SK_MAGIC) && FD_ISSET(s->fd, &rd) && s->rx_hook)
1635 1636
		do
		  {
1637
		    steps--;
1638 1639 1640 1641
		    e = sk_read(s);
		    if (s != current_sock)
		      goto next;
		  }
1642 1643 1644
		while (e && s->rx_hook && steps);

	      steps = MAX_STEPS;
1645 1646 1647
	      if (FD_ISSET(s->fd, &wr))
		do
		  {
1648
		    steps--;
1649 1650 1651 1652
		    e = sk_write(s);
		    if (s != current_sock)
		      goto next;
		  }
1653
		while (e && steps);
1654 1655
	      current_sock = sk_next(s);
	    next: ;
1656
	    }
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684

	  short_loops++;
	  if (events && (short_loops < SHORT_LOOP_MAX))
	    continue;
	  short_loops = 0;

	  int count = 0;
	  current_sock = stored_sock;
	  if (current_sock == NULL)
	    current_sock = SKIP_BACK(sock, n, HEAD(sock_list));

	  while (current_sock && count < MAX_RX_STEPS)
	    {
	      sock *s = current_sock;
	      int e;

	      if ((s->type < SK_MAGIC) && FD_ISSET(s->fd, &rd) && s->rx_hook)
		{
		  count++;
		  e = sk_read(s);
		  if (s != current_sock)
		      goto next2;
		}
	      current_sock = sk_next(s);
	    next2: ;
	    }

	  stored_sock = current_sock;
1685 1686 1687
	}
    }
}
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697

void
test_old_bird(char *path)
{
  int fd;
  struct sockaddr_un sa;

  fd = socket(AF_UNIX, SOCK_STREAM, 0);
  if (fd < 0)
    die("Cannot create socket: %m");
1698 1699
  if (strlen(path) >= sizeof(sa.sun_path))
    die("Socket path too long");
1700 1701 1702 1703 1704 1705 1706 1707 1708
  bzero(&sa, sizeof(sa));
  sa.sun_family = AF_UNIX;
  strcpy(sa.sun_path, path);
  if (connect(fd, (struct sockaddr *) &sa, SUN_LEN(&sa)) == 0)
    die("I found another BIRD running.");
  close(fd);
}