io.c 32.5 KB
Newer Older
1 2 3
/*
 *	BIRD Internet Routing Daemon -- Unix I/O
 *
4
 *	(c) 1998--2004 Martin Mares <mj@ucw.cz>
5
 *      (c) 2004       Ondrej Filip <feela@network.cz>
6 7 8 9 10 11
 *
 *	Can be freely distributed and used under the terms of the GNU GPL.
 */

#include <stdio.h>
#include <stdlib.h>
12
#include <time.h>
13 14 15 16
#include <sys/time.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/fcntl.h>
17
#include <sys/un.h>
18 19 20 21 22 23 24 25
#include <unistd.h>
#include <errno.h>

#include "nest/bird.h"
#include "lib/lists.h"
#include "lib/resource.h"
#include "lib/timer.h"
#include "lib/socket.h"
26
#include "lib/event.h"
27
#include "lib/string.h"
28 29 30
#include "nest/iface.h"

#include "lib/unix.h"
31
#include "lib/sysio.h"
32

33
/* Maximum number of calls of tx handler for one socket in one
34 35 36 37 38
 * select iteration. Should be small enough to not monopolize CPU by
 * one protocol instance.
 */
#define MAX_STEPS 4

39 40 41 42 43
/* Maximum number of calls of rx handler for all sockets in one select
   iteration. RX callbacks are often much more costly so we limit
   this to gen small latencies */
#define MAX_RX_STEPS 4

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
/*
 *	Tracked Files
 */

struct rfile {
  resource r;
  FILE *f;
};

static void
rf_free(resource *r)
{
  struct rfile *a = (struct rfile *) r;

  fclose(a->f);
}

static void
rf_dump(resource *r)
{
  struct rfile *a = (struct rfile *) r;

  debug("(FILE *%p)\n", a->f);
}

static struct resclass rf_class = {
  "FILE",
  sizeof(struct rfile),
  rf_free,
73 74
  rf_dump,
  NULL
75 76 77
};

void *
78
tracked_fopen(pool *p, char *name, char *mode)
79 80 81 82 83 84 85 86 87 88 89
{
  FILE *f = fopen(name, mode);

  if (f)
    {
      struct rfile *r = ralloc(p, &rf_class);
      r->f = f;
    }
  return f;
}

90 91 92 93 94
/**
 * DOC: Timers
 *
 * Timers are resources which represent a wish of a module to call
 * a function at the specified time. The platform dependent code
Martin Mareš's avatar
Martin Mareš committed
95
 * doesn't guarantee exact timing, only that a timer function
96 97
 * won't be called before the requested time.
 *
98 99 100 101 102
 * In BIRD, time is represented by values of the &bird_clock_t type
 * which are integral numbers interpreted as a relative number of seconds since
 * some fixed time point in past. The current time can be read
 * from variable @now with reasonable accuracy and is monotonic. There is also
 * a current 'absolute' time in variable @now_real reported by OS.
103 104 105 106 107
 *
 * Each timer is described by a &timer structure containing a pointer
 * to the handler function (@hook), data private to this function (@data),
 * time the function should be called at (@expires, 0 for inactive timers),
 * for the other fields see |timer.h|.
108 109 110 111 112 113 114
 */

#define NEAR_TIMER_LIMIT 4

static list near_timers, far_timers;
static bird_clock_t first_far_timer = TIME_INFINITY;

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
bird_clock_t now, now_real;

static void
update_times_plain(void)
{
  bird_clock_t new_time = time(NULL);
  int delta = new_time - now_real;

  if ((delta >= 0) && (delta < 60))
    now += delta;
  else if (now_real != 0)
   log(L_WARN "Time jump, delta %d s", delta);

  now_real = new_time;
}

static void
update_times_gettime(void)
{
  struct timespec ts;
  int rv;

  rv = clock_gettime(CLOCK_MONOTONIC, &ts);
  if (rv != 0)
    die("clock_gettime: %m");

  if (ts.tv_sec != now) {
    if (ts.tv_sec < now)
      log(L_ERR "Monotonic timer is broken");

    now = ts.tv_sec;
    now_real = time(NULL);
  }
}

static int clock_monotonic_available;

static inline void
update_times(void)
{
  if (clock_monotonic_available)
    update_times_gettime();
  else
    update_times_plain();
}

static inline void
init_times(void)
{
 struct timespec ts;
 clock_monotonic_available = (clock_gettime(CLOCK_MONOTONIC, &ts) == 0);
 if (!clock_monotonic_available)
   log(L_WARN "Monotonic timer is missing");
}

170 171 172 173 174 175 176 177 178 179 180 181 182 183

static void
tm_free(resource *r)
{
  timer *t = (timer *) r;

  tm_stop(t);
}

static void
tm_dump(resource *r)
{
  timer *t = (timer *) r;

184
  debug("(code %p, data %p, ", t->hook, t->data);
185 186 187 188
  if (t->randomize)
    debug("rand %d, ", t->randomize);
  if (t->recurrent)
    debug("recur %d, ", t->recurrent);
189 190 191 192 193 194 195 196 197 198
  if (t->expires)
    debug("expires in %d sec)\n", t->expires - now);
  else
    debug("inactive)\n");
}

static struct resclass tm_class = {
  "Timer",
  sizeof(timer),
  tm_free,
199 200
  tm_dump,
  NULL
201 202
};

203 204 205 206 207 208 209 210
/**
 * tm_new - create a timer
 * @p: pool
 *
 * This function creates a new timer resource and returns
 * a pointer to it. To use the timer, you need to fill in
 * the structure fields and call tm_start() to start timing.
 */
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
timer *
tm_new(pool *p)
{
  timer *t = ralloc(p, &tm_class);
  return t;
}

static inline void
tm_insert_near(timer *t)
{
  node *n = HEAD(near_timers);

  while (n->next && (SKIP_BACK(timer, n, n)->expires < t->expires))
    n = n->next;
  insert_node(&t->n, n->prev);
}

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
/**
 * tm_start - start a timer
 * @t: timer
 * @after: number of seconds the timer should be run after
 *
 * This function schedules the hook function of the timer to
 * be called after @after seconds. If the timer has been already
 * started, it's @expire time is replaced by the new value.
 *
 * You can have set the @randomize field of @t, the timeout
 * will be increased by a random number of seconds chosen
 * uniformly from range 0 .. @randomize.
 *
 * You can call tm_start() from the handler function of the timer
 * to request another run of the timer. Also, you can set the @recurrent
 * field to have the timer re-added automatically with the same timeout.
 */
245 246 247 248 249 250
void
tm_start(timer *t, unsigned after)
{
  bird_clock_t when;

  if (t->randomize)
251
    after += random() % (t->randomize + 1);
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
  when = now + after;
  if (t->expires == when)
    return;
  if (t->expires)
    rem_node(&t->n);
  t->expires = when;
  if (after <= NEAR_TIMER_LIMIT)
    tm_insert_near(t);
  else
    {
      if (!first_far_timer || first_far_timer > when)
	first_far_timer = when;
      add_tail(&far_timers, &t->n);
    }
}

268 269 270 271 272 273 274
/**
 * tm_stop - stop a timer
 * @t: timer
 *
 * This function stops a timer. If the timer is already stopped,
 * nothing happens.
 */
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
void
tm_stop(timer *t)
{
  if (t->expires)
    {
      rem_node(&t->n);
      t->expires = 0;
    }
}

static void
tm_dump_them(char *name, list *l)
{
  node *n;
  timer *t;

  debug("%s timers:\n", name);
  WALK_LIST(n, *l)
    {
      t = SKIP_BACK(timer, n, n);
      debug("%p ", t);
      tm_dump(&t->r);
    }
  debug("\n");
}

void
tm_dump_all(void)
{
  tm_dump_them("Near", &near_timers);
  tm_dump_them("Far", &far_timers);
}

static inline time_t
tm_first_shot(void)
{
  time_t x = first_far_timer;

  if (!EMPTY_LIST(near_timers))
    {
      timer *t = SKIP_BACK(timer, n, HEAD(near_timers));
      if (t->expires < x)
	x = t->expires;
    }
  return x;
}

static void
tm_shot(void)
{
  timer *t;
  node *n, *m;

  if (first_far_timer <= now)
    {
330
      bird_clock_t limit = now + NEAR_TIMER_LIMIT;
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
      first_far_timer = TIME_INFINITY;
      n = HEAD(far_timers);
      while (m = n->next)
	{
	  t = SKIP_BACK(timer, n, n);
	  if (t->expires <= limit)
	    {
	      rem_node(n);
	      tm_insert_near(t);
	    }
	  else if (t->expires < first_far_timer)
	    first_far_timer = t->expires;
	  n = m;
	}
    }
  while ((n = HEAD(near_timers)) -> next)
    {
348
      int delay;
349 350 351 352
      t = SKIP_BACK(timer, n, n);
      if (t->expires > now)
	break;
      rem_node(n);
353
      delay = t->expires - now;
354
      t->expires = 0;
355 356 357 358 359 360 361
      if (t->recurrent)
	{
	  int i = t->recurrent - delay;
	  if (i < 0)
	    i = 0;
	  tm_start(t, i);
	}
362 363 364 365
      t->hook(t);
    }
}

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
/**
 * tm_parse_datetime - parse a date and time
 * @x: datetime string
 *
 * tm_parse_datetime() takes a textual representation of
 * a date and time (dd-mm-yyyy hh:mm:ss)
 * and converts it to the corresponding value of type &bird_clock_t.
 */
bird_clock_t
tm_parse_datetime(char *x)
{
  struct tm tm;
  int n;
  time_t t;

  if (sscanf(x, "%d-%d-%d %d:%d:%d%n", &tm.tm_mday, &tm.tm_mon, &tm.tm_year, &tm.tm_hour, &tm.tm_min, &tm.tm_sec, &n) != 6 || x[n])
    return tm_parse_date(x);
  tm.tm_mon--;
  tm.tm_year -= 1900;
  t = mktime(&tm);
  if (t == (time_t) -1)
    return 0;
  return t;
}
390 391 392 393 394 395 396
/**
 * tm_parse_date - parse a date
 * @x: date string
 *
 * tm_parse_date() takes a textual representation of a date (dd-mm-yyyy)
 * and converts it to the corresponding value of type &bird_clock_t.
 */
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
bird_clock_t
tm_parse_date(char *x)
{
  struct tm tm;
  int n;
  time_t t;

  if (sscanf(x, "%d-%d-%d%n", &tm.tm_mday, &tm.tm_mon, &tm.tm_year, &n) != 3 || x[n])
    return 0;
  tm.tm_mon--;
  tm.tm_year -= 1900;
  tm.tm_hour = tm.tm_min = tm.tm_sec = 0;
  t = mktime(&tm);
  if (t == (time_t) -1)
    return 0;
  return t;
}

415 416
static void
tm_format_reltime(char *x, struct tm *tm, bird_clock_t delta)
417
{
418 419
  static char *month_names[12] = { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
				   "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
420

421 422 423 424 425 426
  if (delta < 20*3600)
    bsprintf(x, "%02d:%02d", tm->tm_hour, tm->tm_min);
  else if (delta < 360*86400)
    bsprintf(x, "%s%02d", month_names[tm->tm_mon], tm->tm_mday);
  else
    bsprintf(x, "%d", tm->tm_year+1900);
427 428
}

429 430
#include "conf/conf.h"

431 432 433 434 435
/**
 * tm_format_datetime - convert date and time to textual representation
 * @x: destination buffer of size %TM_DATETIME_BUFFER_SIZE
 * @t: time
 *
436 437
 * This function formats the given relative time value @t to a textual
 * date/time representation (dd-mm-yyyy hh:mm:ss) in real time.
438
 */
439
void
440
tm_format_datetime(char *x, struct timeformat *fmt_spec, bird_clock_t t)
441
{
442
  const char *fmt_used;
443
  struct tm *tm;
444 445
  bird_clock_t delta = now - t;
  t = now_real - delta;
446 447
  tm = localtime(&t);

448 449
  if (fmt_spec->fmt1 == NULL)
    return tm_format_reltime(x, tm, delta);
450

451 452
  if ((fmt_spec->limit == 0) || (delta < fmt_spec->limit))
    fmt_used = fmt_spec->fmt1;
453
  else
454 455 456 457 458
    fmt_used = fmt_spec->fmt2;

  int rv = strftime(x, TM_DATETIME_BUFFER_SIZE, fmt_used, tm);
  if (((rv == 0) && fmt_used[0]) || (rv == TM_DATETIME_BUFFER_SIZE))
    strcpy(x, "<too-long>");
459 460
}

461 462 463 464 465 466 467 468 469 470
/**
 * DOC: Sockets
 *
 * Socket resources represent network connections. Their data structure (&socket)
 * contains a lot of fields defining the exact type of the socket, the local and
 * remote addresses and ports, pointers to socket buffers and finally pointers to
 * hook functions to be called when new data have arrived to the receive buffer
 * (@rx_hook), when the contents of the transmit buffer have been transmitted
 * (@tx_hook) and when an error or connection close occurs (@err_hook).
 *
471
 * Freeing of sockets from inside socket hooks is perfectly safe.
472 473
 */

474 475 476 477
#ifndef SOL_IP
#define SOL_IP IPPROTO_IP
#endif

478 479 480 481
#ifndef SOL_IPV6
#define SOL_IPV6 IPPROTO_IPV6
#endif

482
static list sock_list;
483
static struct birdsock *current_sock;
484
static struct birdsock *stored_sock;
485 486 487 488 489 490 491 492 493 494
static int sock_recalc_fdsets_p;

static inline sock *
sk_next(sock *s)
{
  if (!s->n.next->next)
    return NULL;
  else
    return SKIP_BACK(sock, n, s->n.next);
}
495 496

static void
497
sk_alloc_bufs(sock *s)
498
{
499 500 501 502 503 504 505
  if (!s->rbuf && s->rbsize)
    s->rbuf = s->rbuf_alloc = xmalloc(s->rbsize);
  s->rpos = s->rbuf;
  if (!s->tbuf && s->tbsize)
    s->tbuf = s->tbuf_alloc = xmalloc(s->tbsize);
  s->tpos = s->ttx = s->tbuf;
}
506

507 508 509
static void
sk_free_bufs(sock *s)
{
510
  if (s->rbuf_alloc)
511 512 513 514
    {
      xfree(s->rbuf_alloc);
      s->rbuf = s->rbuf_alloc = NULL;
    }
515
  if (s->tbuf_alloc)
516 517 518 519 520 521 522 523 524 525 526 527
    {
      xfree(s->tbuf_alloc);
      s->tbuf = s->tbuf_alloc = NULL;
    }
}

static void
sk_free(resource *r)
{
  sock *s = (sock *) r;

  sk_free_bufs(s);
528
  if (s->fd >= 0)
529 530
    {
      close(s->fd);
531 532
      if (s == current_sock)
	current_sock = sk_next(s);
533 534
      if (s == stored_sock)
	stored_sock = sk_next(s);
535
      rem_node(&s->n);
536
      sock_recalc_fdsets_p = 1;
537
    }
538 539
}

540 541 542 543 544 545 546
void
sk_reallocate(sock *s)
{
  sk_free_bufs(s);
  sk_alloc_bufs(s);
}

547 548 549 550
static void
sk_dump(resource *r)
{
  sock *s = (sock *) r;
551
  static char *sk_type_names[] = { "TCP<", "TCP>", "TCP", "UDP", "UDP/MC", "IP", "IP/MC", "MAGIC", "UNIX<", "UNIX", "DEL!" };
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568

  debug("(%s, ud=%p, sa=%08x, sp=%d, da=%08x, dp=%d, tos=%d, ttl=%d, if=%s)\n",
	sk_type_names[s->type],
	s->data,
	s->saddr,
	s->sport,
	s->daddr,
	s->dport,
	s->tos,
	s->ttl,
	s->iface ? s->iface->name : "none");
}

static struct resclass sk_class = {
  "Socket",
  sizeof(sock),
  sk_free,
569 570
  sk_dump,
  NULL
571 572
};

573 574 575 576 577 578 579 580
/**
 * sk_new - create a socket
 * @p: pool
 *
 * This function creates a new socket resource. If you want to use it,
 * you need to fill in all the required fields of the structure and
 * call sk_open() to do the actual opening of the socket.
 */
581 582 583 584 585
sock *
sk_new(pool *p)
{
  sock *s = ralloc(p, &sk_class);
  s->pool = p;
586
  // s->saddr = s->daddr = IPA_NONE;
587 588 589 590 591
  s->tos = s->ttl = -1;
  s->fd = -1;
  return s;
}

592 593 594 595 596 597
static void
sk_insert(sock *s)
{
  add_tail(&sock_list, &s->n);
  sock_recalc_fdsets_p = 1;
}
598

599 600 601 602 603
#ifdef IPV6

void
fill_in_sockaddr(sockaddr *sa, ip_addr a, unsigned port)
{
604
  memset (sa, 0, sizeof (struct sockaddr_in6));
605 606 607
  sa->sin6_family = AF_INET6;
  sa->sin6_port = htons(port);
  sa->sin6_flowinfo = 0;
608 609 610
#ifdef HAVE_SIN_LEN
  sa->sin6_len = sizeof(struct sockaddr_in6);
#endif
611 612 613
  set_inaddr(&sa->sin6_addr, a);
}

614 615 616 617 618 619
static inline void
fill_in_sockifa(sockaddr *sa, struct iface *ifa)
{
  sa->sin6_scope_id = ifa ? ifa->index : 0;
}

620
void
621
get_sockaddr(struct sockaddr_in6 *sa, ip_addr *a, unsigned *port, int check)
622
{
623 624
  if (check && sa->sin6_family != AF_INET6)
    bug("get_sockaddr called for wrong address family (%d)", sa->sin6_family);
625 626 627 628 629 630 631 632
  if (port)
    *port = ntohs(sa->sin6_port);
  memcpy(a, &sa->sin6_addr, sizeof(*a));
  ipa_ntoh(*a);
}

#else

633
void
634
fill_in_sockaddr(sockaddr *sa, ip_addr a, unsigned port)
635
{
636
  memset (sa, 0, sizeof (struct sockaddr_in));
637 638
  sa->sin_family = AF_INET;
  sa->sin_port = htons(port);
639 640 641
#ifdef HAVE_SIN_LEN
  sa->sin_len = sizeof(struct sockaddr_in);
#endif
642 643 644
  set_inaddr(&sa->sin_addr, a);
}

645
static inline void
646
fill_in_sockifa(sockaddr *sa UNUSED, struct iface *ifa UNUSED)
647 648 649
{
}

650
void
651
get_sockaddr(struct sockaddr_in *sa, ip_addr *a, unsigned *port, int check)
652
{
653 654
  if (check && sa->sin_family != AF_INET)
    bug("get_sockaddr called for wrong address family (%d)", sa->sin_family);
655 656
  if (port)
    *port = ntohs(sa->sin_port);
657
  memcpy(a, &sa->sin_addr.s_addr, sizeof(*a));
658
  ipa_ntoh(*a);
659 660
}

661 662
#endif

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733

#ifdef IPV6

/* PKTINFO handling is also standardized in IPv6 */
#define CMSG_RX_SPACE CMSG_SPACE(sizeof(struct in6_pktinfo))
#define CMSG_TX_SPACE CMSG_SPACE(sizeof(struct in6_pktinfo))

static char *
sysio_register_cmsgs(sock *s)
{
  int ok = 1;
  if ((s->flags & SKF_LADDR_RX) &&
      setsockopt(s->fd, IPPROTO_IPV6, IPV6_RECVPKTINFO, &ok, sizeof(ok)) < 0)
    return "IPV6_RECVPKTINFO";

  return NULL;
}

static void
sysio_process_rx_cmsgs(sock *s, struct msghdr *msg)
{
  struct cmsghdr *cm;
  struct in6_pktinfo *pi = NULL;

  if (!(s->flags & SKF_LADDR_RX))
    return;

  for (cm = CMSG_FIRSTHDR(msg); cm != NULL; cm = CMSG_NXTHDR(msg, cm))
    {
      if (cm->cmsg_level == IPPROTO_IPV6 && cm->cmsg_type == IPV6_PKTINFO)
	pi = (struct in6_pktinfo *) CMSG_DATA(cm);
    }

  if (!pi)
    {
      s->laddr = IPA_NONE;
      s->lifindex = 0;
      return;
    }

  get_inaddr(&s->laddr, &pi->ipi6_addr);
  s->lifindex = pi->ipi6_ifindex;
  return;
}

static void
sysio_prepare_tx_cmsgs(sock *s, struct msghdr *msg, void *cbuf, size_t cbuflen)
{
  struct cmsghdr *cm;
  struct in6_pktinfo *pi;

  if (!(s->flags & SKF_LADDR_TX))
    return;

  msg->msg_control = cbuf;
  msg->msg_controllen = cbuflen;

  cm = CMSG_FIRSTHDR(msg);
  cm->cmsg_level = IPPROTO_IPV6;
  cm->cmsg_type = IPV6_PKTINFO;
  cm->cmsg_len = CMSG_LEN(sizeof(*pi));

  pi = (struct in6_pktinfo *) CMSG_DATA(cm);
  set_inaddr(&pi->ipi6_addr, s->saddr);
  pi->ipi6_ifindex = s->iface ? s->iface->index : 0;

  msg->msg_controllen = cm->cmsg_len;
  return;
}
#endif

734 735 736 737
static char *
sk_set_ttl_int(sock *s)
{
#ifdef IPV6
738
  if (setsockopt(s->fd, SOL_IPV6, IPV6_UNICAST_HOPS, &s->ttl, sizeof(s->ttl)) < 0)
739 740 741 742 743
    return "IPV6_UNICAST_HOPS";
#else
  if (setsockopt(s->fd, SOL_IP, IP_TTL, &s->ttl, sizeof(s->ttl)) < 0)
    return "IP_TTL";
#ifdef CONFIG_UNIX_DONTROUTE
744
  int one = 1;
745 746 747 748 749 750 751
  if (s->ttl == 1 && setsockopt(s->fd, SOL_SOCKET, SO_DONTROUTE, &one, sizeof(one)) < 0)
    return "SO_DONTROUTE";
#endif 
#endif
  return NULL;
}

752 753 754
#define ERR(x) do { err = x; goto bad; } while(0)
#define WARN(x) log(L_WARN "sk_setup: %s: %m", x)

755 756 757 758
static char *
sk_setup(sock *s)
{
  int fd = s->fd;
759
  char *err = NULL;
760 761 762

  if (fcntl(fd, F_SETFL, O_NONBLOCK) < 0)
    ERR("fcntl(O_NONBLOCK)");
763 764
  if (s->type == SK_UNIX)
    return NULL;
765
#ifndef IPV6
766
  if ((s->tos >= 0) && setsockopt(fd, SOL_IP, IP_TOS, &s->tos, sizeof(s->tos)) < 0)
767
    WARN("IP_TOS");
768
#endif
769 770 771 772 773 774 775

#ifdef IPV6
  int v = 1;
  if ((s->flags & SKF_V6ONLY) && setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, &v, sizeof(v)) < 0)
    WARN("IPV6_V6ONLY");
#endif

776 777 778
  if (s->ttl >= 0)
    err = sk_set_ttl_int(s);

779
  sysio_register_cmsgs(s);
780 781 782 783
bad:
  return err;
}

784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
/**
 * sk_set_ttl - set TTL for given socket.
 * @s: socket
 * @ttl: TTL value
 *
 * Set TTL for already opened connections when TTL was not set before.
 * Useful for accepted connections when different ones should have 
 * different TTL.
 *
 * Result: 0 for success, -1 for an error.
 */

int
sk_set_ttl(sock *s, int ttl)
{
  char *err;

  s->ttl = ttl;
  if (err = sk_set_ttl_int(s))
    log(L_ERR "sk_set_ttl: %s: %m", err);

  return (err ? -1 : 0);
}

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834

/**
 * sk_set_md5_auth - add / remove MD5 security association for given socket.
 * @s: socket
 * @a: IP address of the other side
 * @passwd: password used for MD5 authentication
 *
 * In TCP MD5 handling code in kernel, there is a set of pairs
 * (address, password) used to choose password according to
 * address of the other side. This function is useful for
 * listening socket, for active sockets it is enough to set
 * s->password field.
 *
 * When called with passwd != NULL, the new pair is added,
 * When called with passwd == NULL, the existing pair is removed.
 *
 * Result: 0 for success, -1 for an error.
 */

int
sk_set_md5_auth(sock *s, ip_addr a, char *passwd)
{
  sockaddr sa;
  fill_in_sockaddr(&sa, a, 0);
  return sk_set_md5_auth_int(s, &sa, passwd);
}

835 836 837 838
int
sk_set_broadcast(sock *s, int enable)
{
  if (setsockopt(s->fd, SOL_SOCKET, SO_BROADCAST, &enable, sizeof(enable)) < 0)
839 840 841 842 843 844
    {
      log(L_ERR "sk_set_broadcast: SO_BROADCAST: %m");
      return -1;
    }

  return 0;
845 846 847 848 849
}


#ifdef IPV6

850 851 852 853 854 855 856 857 858 859 860 861
int
sk_set_ipv6_checksum(sock *s, int offset)
{
  if (setsockopt(s->fd, IPPROTO_IPV6, IPV6_CHECKSUM, &offset, sizeof(offset)) < 0)
    {
      log(L_ERR "sk_set_ipv6_checksum: IPV6_CHECKSUM: %m");
      return -1;
    }

  return 0;
}

862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
int
sk_setup_multicast(sock *s)
{
  char *err;
  int zero = 0;
  int index;

  ASSERT(s->iface && s->iface->addr);

  index = s->iface->index;
  if (setsockopt(s->fd, SOL_IPV6, IPV6_MULTICAST_HOPS, &s->ttl, sizeof(s->ttl)) < 0)
    ERR("IPV6_MULTICAST_HOPS");
  if (setsockopt(s->fd, SOL_IPV6, IPV6_MULTICAST_LOOP, &zero, sizeof(zero)) < 0)
    ERR("IPV6_MULTICAST_LOOP");
  if (setsockopt(s->fd, SOL_IPV6, IPV6_MULTICAST_IF, &index, sizeof(index)) < 0)
    ERR("IPV6_MULTICAST_IF");

  return 0;

bad:
  log(L_ERR "sk_setup_multicast: %s: %m", err);
  return -1;
}

int
sk_join_group(sock *s, ip_addr maddr)
{
  struct ipv6_mreq mreq;
	
  set_inaddr(&mreq.ipv6mr_multiaddr, maddr);

#ifdef CONFIG_IPV6_GLIBC_20
  mreq.ipv6mr_ifindex = s->iface->index;
#else
  mreq.ipv6mr_interface = s->iface->index;
#endif

899
  if (setsockopt(s->fd, SOL_IPV6, IPV6_JOIN_GROUP, &mreq, sizeof(mreq)) < 0)
900
    {
901
      log(L_ERR "sk_join_group: IPV6_JOIN_GROUP: %m");
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
      return -1;
    }

  return 0;
}

int
sk_leave_group(sock *s, ip_addr maddr)
{
  struct ipv6_mreq mreq;
	
  set_inaddr(&mreq.ipv6mr_multiaddr, maddr);

#ifdef CONFIG_IPV6_GLIBC_20
  mreq.ipv6mr_ifindex = s->iface->index;
#else
  mreq.ipv6mr_interface = s->iface->index;
#endif

921
  if (setsockopt(s->fd, SOL_IPV6, IPV6_LEAVE_GROUP, &mreq, sizeof(mreq)) < 0)
922
    {
923
      log(L_ERR "sk_leave_group: IPV6_LEAVE_GROUP: %m");
924 925 926 927 928 929
      return -1;
    }

  return 0;
}

930

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
#else /* IPV4 */

int
sk_setup_multicast(sock *s)
{
  char *err;

  ASSERT(s->iface && s->iface->addr);

  if (err = sysio_setup_multicast(s))
    {
      log(L_ERR "sk_setup_multicast: %s: %m", err);
      return -1;
    }

  return 0;
}

int
sk_join_group(sock *s, ip_addr maddr)
{
 char *err;

 if (err = sysio_join_group(s, maddr))
    {
      log(L_ERR "sk_join_group: %s: %m", err);
      return -1;
    }

  return 0;
}

int
sk_leave_group(sock *s, ip_addr maddr)
{
 char *err;

 if (err = sysio_leave_group(s, maddr))
    {
      log(L_ERR "sk_leave_group: %s: %m", err);
      return -1;
    }

  return 0;
}

#endif 

979

980
static void
981 982 983 984
sk_tcp_connected(sock *s)
{
  s->type = SK_TCP;
  sk_alloc_bufs(s);
985
  s->tx_hook(s);
986 987
}

988 989 990 991 992 993 994 995 996 997
static int
sk_passive_connected(sock *s, struct sockaddr *sa, int al, int type)
{
  int fd = accept(s->fd, sa, &al);
  if (fd >= 0)
    {
      sock *t = sk_new(s->pool);
      char *err;
      t->type = type;
      t->fd = fd;
998 999 1000 1001 1002
      t->ttl = s->ttl;
      t->tos = s->tos;
      t->rbsize = s->rbsize;
      t->tbsize = s->tbsize;
      if (type == SK_TCP)
1003 1004 1005 1006 1007 1008 1009 1010
	{
	  sockaddr lsa;
	  int lsa_len = sizeof(lsa);
	  if (getsockname(fd, (struct sockaddr *) &lsa, &lsa_len) == 0)
	    get_sockaddr(&lsa, &t->saddr, &t->sport, 1);

	  get_sockaddr((sockaddr *) sa, &t->daddr, &t->dport, 1);
	}
1011
      sk_insert(t);
1012 1013 1014
      if (err = sk_setup(t))
	{
	  log(L_ERR "Incoming connection: %s: %m", err);
1015 1016
	  rfree(t);
	  return 1;
1017 1018
	}
      sk_alloc_bufs(t);
1019
      s->rx_hook(t, 0);
1020 1021 1022 1023
      return 1;
    }
  else if (errno != EINTR && errno != EAGAIN)
    {
1024
      s->err_hook(s, errno);
1025 1026 1027 1028
    }
  return 0;
}

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
/**
 * sk_open - open a socket
 * @s: socket
 *
 * This function takes a socket resource created by sk_new() and
 * initialized by the user and binds a corresponding network connection
 * to it.
 *
 * Result: 0 for success, -1 for an error.
 */
1039 1040 1041
int
sk_open(sock *s)
{
1042
  int fd;
1043
  sockaddr sa;
1044 1045 1046 1047 1048 1049 1050 1051
  int one = 1;
  int type = s->type;
  int has_src = ipa_nonzero(s->saddr) || s->sport;
  char *err;

  switch (type)
    {
    case SK_TCP_ACTIVE:
1052 1053
      s->ttx = "";			/* Force s->ttx != s->tpos */
      /* Fall thru */
1054
    case SK_TCP_PASSIVE:
1055
      fd = socket(BIRD_PF, SOCK_STREAM, IPPROTO_TCP);
1056 1057
      break;
    case SK_UDP:
1058
      fd = socket(BIRD_PF, SOCK_DGRAM, IPPROTO_UDP);
1059 1060
      break;
    case SK_IP:
1061
      fd = socket(BIRD_PF, SOCK_RAW, s->dport);
1062
      break;
1063 1064 1065
    case SK_MAGIC:
      fd = s->fd;
      break;
1066
    default:
1067
      bug("sk_open() called for invalid sock type %d", type);
1068 1069 1070 1071 1072 1073 1074
    }
  if (fd < 0)
    die("sk_open: socket: %m");
  s->fd = fd;

  if (err = sk_setup(s))
    goto bad;
1075

1076 1077 1078 1079
  if (has_src)
    {
      int port;

1080
      if (type == SK_IP)
1081 1082 1083 1084 1085 1086 1087 1088
	port = 0;
      else
	{
	  port = s->sport;
	  if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)) < 0)
	    ERR("SO_REUSEADDR");
	}
      fill_in_sockaddr(&sa, s->saddr, port);
1089
      fill_in_sockifa(&sa, s->iface);
1090 1091 1092 1093
      if (bind(fd, (struct sockaddr *) &sa, sizeof(sa)) < 0)
	ERR("bind");
    }
  fill_in_sockaddr(&sa, s->daddr, s->dport);
1094 1095 1096 1097 1098 1099 1100 1101

  if (s->password)
    {
      int rv = sk_set_md5_auth_int(s, &sa, s->password);
      if (rv < 0)
	goto bad_no_log;
    }

1102 1103 1104 1105 1106
  switch (type)
    {
    case SK_TCP_ACTIVE:
      if (connect(fd, (struct sockaddr *) &sa, sizeof(sa)) >= 0)
	sk_tcp_connected(s);
1107 1108
      else if (errno != EINTR && errno != EAGAIN && errno != EINPROGRESS &&
	       errno != ECONNREFUSED && errno != EHOSTUNREACH)
1109 1110 1111 1112 1113 1114
	ERR("connect");
      break;
    case SK_TCP_PASSIVE:
      if (listen(fd, 8))
	ERR("listen");
      break;
1115 1116 1117
    case SK_MAGIC:
      break;
    default:
1118
      sk_alloc_bufs(s);
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
#ifdef IPV6
#ifdef IPV6_MTU_DISCOVER
      {
	int dont = IPV6_PMTUDISC_DONT;
	if (setsockopt(fd, SOL_IPV6, IPV6_MTU_DISCOVER, &dont, sizeof(dont)) < 0)
	  ERR("IPV6_MTU_DISCOVER");
      }
#endif
#else
#ifdef IP_PMTUDISC
      {
	int dont = IP_PMTUDISC_DONT;
	if (setsockopt(fd, SOL_IP, IP_PMTUDISC, &dont, sizeof(dont)) < 0)
	  ERR("IP_PMTUDISC");
      }
#endif
#endif
1136 1137
    }

1138
  sk_insert(s);
1139 1140 1141 1142
  return 0;

bad:
  log(L_ERR "sk_open: %s: %m", err);
1143
bad_no_log:
1144 1145 1146 1147 1148
  close(fd);
  s->fd = -1;
  return -1;
}

1149
void
1150 1151 1152 1153 1154 1155 1156 1157
sk_open_unix(sock *s, char *name)
{
  int fd;
  struct sockaddr_un sa;
  char *err;

  fd = socket(AF_UNIX, SOCK_STREAM, 0);
  if (fd < 0)
1158
    ERR("socket");
1159 1160 1161 1162
  s->fd = fd;
  if (err = sk_setup(s))
    goto bad;
  unlink(name);
1163

1164
  /* Path length checked in test_old_bird() */
1165
  sa.sun_family = AF_UNIX;
1166
  strcpy(sa.sun_path, name);
1167
  if (bind(fd, (struct sockaddr *) &sa, SUN_LEN(&sa)) < 0)
1168 1169 1170
    ERR("bind");
  if (listen(fd, 8))
    ERR("listen");
1171
  sk_insert(s);
1172
  return;
1173

1174
 bad:
1175
  log(L_ERR "sk_open_unix: %s: %m", err);
1176
  die("Unable to create control socket %s", name);
1177 1178
}

1179 1180
static inline void reset_tx_buffer(sock *s) { s->ttx = s->tpos = s->tbuf; }

1181 1182 1183 1184 1185 1186 1187 1188
static int
sk_maybe_write(sock *s)
{
  int e;

  switch (s->type)
    {
    case SK_TCP:
1189
    case SK_MAGIC:
1190
    case SK_UNIX:
1191 1192 1193 1194 1195 1196 1197
      while (s->ttx != s->tpos)
	{
	  e = write(s->fd, s->ttx, s->tpos - s->ttx);
	  if (e < 0)
	    {
	      if (errno != EINTR && errno != EAGAIN)
		{
1198
		  reset_tx_buffer(s);
1199
		  s->err_hook(s, errno);
1200 1201 1202 1203 1204 1205
		  return -1;
		}
	      return 0;
	    }
	  s->ttx += e;
	}
1206
      reset_tx_buffer(s);
1207 1208 1209 1210 1211 1212
      return 1;
    case SK_UDP:
    case SK_IP:
      {
	if (s->tbuf == s->tpos)
	  return 1;
1213

1214 1215
	sockaddr sa;
	fill_in_sockaddr(&sa, s->daddr, s->dport);
1216
	fill_in_sockifa(&sa, s->iface);
1217 1218 1219 1220 1221 1222 1223 1224

	struct iovec iov = {s->tbuf, s->tpos - s->tbuf};
	byte cmsg_buf[CMSG_TX_SPACE];

	struct msghdr msg = {
	  .msg_name = &sa,
	  .msg_namelen = sizeof(sa),
	  .msg_iov = &iov,
1225
	  .msg_iovlen = 1};
1226

1227
	sysio_prepare_tx_cmsgs(s, &msg, cmsg_buf, sizeof(cmsg_buf));
1228 1229
	e = sendmsg(s->fd, &msg, 0);

1230 1231 1232 1233
	if (e < 0)
	  {
	    if (errno != EINTR && errno != EAGAIN)
	      {
1234
		reset_tx_buffer(s);
1235
		s->err_hook(s, errno);
1236 1237 1238 1239
		return -1;
	      }
	    return 0;
	  }
1240
	reset_tx_buffer(s);
1241 1242 1243
	return 1;
      }
    default:
1244
      bug("sk_maybe_write: unknown socket type %d", s->type);
1245 1246 1247
    }
}

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
int
sk_rx_ready(sock *s)
{
  fd_set rd, wr;
  struct timeval timo;
  int rv;

  FD_ZERO(&rd);
  FD_ZERO(&wr);
  FD_SET(s->fd, &rd);

  timo.tv_sec = 0;
  timo.tv_usec = 0;

 redo:
  rv = select(s->fd+1, &rd, &wr, NULL, &timo);
  
  if ((rv < 0) && (errno == EINTR || errno == EAGAIN))
    goto redo;

  return rv;
}

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
/**
 * sk_send - send data to a socket
 * @s: socket
 * @len: number of bytes to send
 *
 * This function sends @len bytes of data prepared in the
 * transmit buffer of the socket @s to the network connection.
 * If the packet can be sent immediately, it does so and returns
 * 1, else it queues the packet for later processing, returns 0
 * and calls the @tx_hook of the socket when the tranmission
 * takes place.
 */
1283 1284 1285 1286 1287 1288 1289 1290
int
sk_send(sock *s, unsigned len)
{
  s->ttx = s->tbuf;
  s->tpos = s->tbuf + len;
  return sk_maybe_write(s);
}

1291 1292 1293 1294 1295 1296 1297
/**
 * sk_send_to - send data to a specific destination
 * @s: socket
 * @len: number of bytes to send
 * @addr: IP address to send the packet to
 * @port: port to send the packet to
 *
1298
 * This is a sk_send() replacement for connection-less packet sockets
1299 1300
 * which allows destination of the packet to be chosen dynamically.
 */
1301 1302 1303
int
sk_send_to(sock *s, unsigned len, ip_addr addr, unsigned port)
{
1304 1305
  s->daddr = addr;
  s->dport = port;
1306 1307 1308 1309 1310
  s->ttx = s->tbuf;
  s->tpos = s->tbuf + len;
  return sk_maybe_write(s);
}

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
/*
int
sk_send_full(sock *s, unsigned len, struct iface *ifa,
	     ip_addr saddr, ip_addr daddr, unsigned dport)
{
  s->iface = ifa;
  s->saddr = saddr;
  s->daddr = daddr;
  s->dport = dport;
  s->ttx = s->tbuf;
  s->tpos = s->tbuf + len;
  return sk_maybe_write(s);
}
*/

1326 1327 1328 1329 1330 1331 1332
static int
sk_read(sock *s)
{
  switch (s->type)
    {
    case SK_TCP_PASSIVE:
      {
1333
	sockaddr sa;
1334 1335 1336 1337 1338 1339
	return sk_passive_connected(s, (struct sockaddr *) &sa, sizeof(sa), SK_TCP);
      }
    case SK_UNIX_PASSIVE:
      {
	struct sockaddr_un sa;
	return sk_passive_connected(s, (struct sockaddr *) &sa, sizeof(sa), SK_UNIX);
1340 1341
      }
    case SK_TCP:
1342
    case SK_UNIX:
1343 1344 1345 1346 1347 1348
      {
	int c = read(s->fd, s->rpos, s->rbuf + s->rbsize - s->rpos);

	if (c < 0)
	  {
	    if (errno != EINTR && errno != EAGAIN)
1349
	      s->err_hook(s, errno);
1350 1351
	  }
	else if (!c)
1352
	  s->err_hook(s, 0);
1353 1354 1355 1356
	else
	  {
	    s->rpos += c;
	    if (s->rx_hook(s, s->rpos - s->rbuf))
1357 1358 1359 1360 1361
	      {
		/* We need to be careful since the socket could have been deleted by the hook */
		if (current_sock == s)
		  s->rpos = s->rbuf;
	      }
1362 1363 1364 1365
	    return 1;
	  }
	return 0;
      }
1366 1367
    case SK_MAGIC:
      return s->rx_hook(s, 0);
1368 1369
    default:
      {
1370
	sockaddr sa;
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
	int e;

	struct iovec iov = {s->rbuf, s->rbsize};
	byte cmsg_buf[CMSG_RX_SPACE];

	struct msghdr msg = {
	  .msg_name = &sa,
	  .msg_namelen = sizeof(sa),
	  .msg_iov = &iov,
	  .msg_iovlen = 1,
	  .msg_control = cmsg_buf,
	  .msg_controllen = sizeof(cmsg_buf),
	  .msg_flags = 0};

	e = recvmsg(s->fd, &msg, 0);
1386 1387 1388 1389

	if (e < 0)
	  {
	    if (errno != EINTR && errno != EAGAIN)
1390
	      s->err_hook(s, errno);
1391 1392 1393
	    return 0;
	  }
	s->rpos = s->rbuf + e;
1394
	get_sockaddr(&sa, &s->faddr, &s->fport, 1);
1395 1396
	sysio_process_rx_cmsgs(s, &msg);

1397 1398 1399 1400 1401 1402
	s->rx_hook(s, e);
	return 1;
      }
    }
}

1403
static int
1404 1405
sk_write(sock *s)
{
1406 1407 1408 1409 1410 1411
  switch (s->type)
    {
    case SK_TCP_ACTIVE:
      {
	sockaddr sa;
	fill_in_sockaddr(&sa, s->daddr, s->dport);
Ondřej Filip's avatar
Ondřej Filip committed
1412
	if (connect(s->fd, (struct sockaddr *) &sa, sizeof(sa)) >= 0 || errno == EISCONN)
1413 1414
	  sk_tcp_connected(s);
	else if (errno != EINTR && errno != EAGAIN && errno != EINPROGRESS)
1415
	  s->err_hook(s, errno);
1416
	return 0;
1417 1418
      }
    default:
1419 1420 1421 1422 1423 1424
      if (s->ttx != s->tpos && sk_maybe_write(s) > 0)
	{
	  s->tx_hook(s);
	  return 1;
	}
      return 0;
1425
    }
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
}

void
sk_dump_all(void)
{
  node *n;
  sock *s;

  debug("Open sockets:\n");
  WALK_LIST(n, sock_list)
    {
      s = SKIP_BACK(sock, n, n);
      debug("%p ", s);
      sk_dump(&s->r);
    }
  debug("\n");
}

#undef ERR
1445
#undef WARN
1446 1447 1448 1449 1450

/*
 *	Main I/O Loop
 */

1451 1452 1453
volatile int async_config_flag;		/* Asynchronous reconfiguration/dump scheduled */
volatile int async_dump_flag;

1454 1455 1456 1457 1458 1459
void
io_init(void)
{
  init_list(&near_timers);
  init_list(&far_timers);
  init_list(&sock_list);
1460
  init_list(&global_event_list);
1461
  krt_io_init();
1462 1463 1464
  init_times();
  update_times();
  srandom((int) now_real);
1465 1466
}

1467 1468 1469
static int short_loops = 0;
#define SHORT_LOOP_MAX 10

1470 1471 1472 1473 1474 1475
void
io_loop(void)
{
  fd_set rd, wr;
  struct timeval timo;
  time_t tout;
1476
  int hi, events;
1477
  sock *s;
1478
  node *n;
1479

1480
  sock_recalc_fdsets_p = 1;
1481 1482
  for(;;)
    {
1483
      events = ev_run_list(&global_event_list);
1484
      update_times();
1485 1486 1487 1488 1489 1490
      tout = tm_first_shot();
      if (tout <= now)
	{
	  tm_shot();
	  continue;
	}
1491 1492
      timo.tv_sec = events ? 0 : tout - now;
      timo.tv_usec = 0;
1493

1494 1495 1496 1497 1498 1499 1500
      if (sock_recalc_fdsets_p)
	{
	  sock_recalc_fdsets_p = 0;
	  FD_ZERO(&rd);
	  FD_ZERO(&wr);
	}

1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
      hi = 0;
      WALK_LIST(n, sock_list)
	{
	  s = SKIP_BACK(sock, n, n);
	  if (s->rx_hook)
	    {
	      FD_SET(s->fd, &rd);
	      if (s->fd > hi)
		hi = s->fd;
	    }
1511 1512
	  else
	    FD_CLR(s->fd, &rd);
1513 1514 1515 1516 1517 1518
	  if (s->tx_hook && s->ttx != s->tpos)
	    {
	      FD_SET(s->fd, &wr);
	      if (s->fd > hi)
		hi = s->fd;
	    }
1519 1520
	  else
	    FD_CLR(s->fd, &wr);
1521 1522
	}

1523 1524 1525 1526 1527 1528 1529 1530 1531
      /*
       * Yes, this is racy. But even if the signal comes before this test
       * and entering select(), it gets caught on the next timer tick.
       */

      if (async_config_flag)
	{
	  async_config();
	  async_config_flag = 0;
1532
	  continue;
1533 1534 1535 1536 1537
	}
      if (async_dump_flag)
	{
	  async_dump();
	  async_dump_flag = 0;
1538 1539 1540 1541 1542 1543 1544
	  continue;
	}
      if (async_shutdown_flag)
	{
	  async_shutdown();
	  async_shutdown_flag = 0;
	  continue;
1545 1546 1547
	}

      /* And finally enter select() to find active sockets */
1548
      hi = select(hi+1, &rd, &wr, NULL, &timo);
1549

1550 1551 1552 1553 1554 1555 1556 1557
      if (hi < 0)
	{
	  if (errno == EINTR || errno == EAGAIN)
	    continue;
	  die("select: %m");
	}
      if (hi)
	{
1558 1559 1560
	  /* guaranteed to be non-empty */
	  current_sock = SKIP_BACK(sock, n, HEAD(sock_list));

1561
	  while (current_sock)
1562
	    {
1563 1564
	      sock *s = current_sock;
	      int e;
1565 1566 1567 1568
	      int steps;

	      steps = MAX_STEPS;
	      if ((s->type >= SK_MAGIC) && FD_ISSET(s->fd, &rd) && s->rx_hook)
1569 1570
		do
		  {
1571
		    steps--;
1572 1573 1574 1575
		    e = sk_read(s);
		    if (s != current_sock)
		      goto next;
		  }
1576 1577 1578
		while (e && s->rx_hook && steps);

	      steps = MAX_STEPS;
1579 1580 1581
	      if (FD_ISSET(s->fd, &wr))
		do
		  {
1582
		    steps--;
1583 1584 1585 1586
		    e = sk_write(s);
		    if (s != current_sock)
		      goto next;
		  }
1587
		while (e && steps);
1588 1589
	      current_sock = sk_next(s);
	    next: ;
1590
	    }
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618

	  short_loops++;
	  if (events && (short_loops < SHORT_LOOP_MAX))
	    continue;
	  short_loops = 0;

	  int count = 0;
	  current_sock = stored_sock;
	  if (current_sock == NULL)
	    current_sock = SKIP_BACK(sock, n, HEAD(sock_list));

	  while (current_sock && count < MAX_RX_STEPS)
	    {
	      sock *s = current_sock;
	      int e;

	      if ((s->type < SK_MAGIC) && FD_ISSET(s->fd, &rd) && s->rx_hook)
		{
		  count++;
		  e = sk_read(s);
		  if (s != current_sock)
		      goto next2;
		}
	      current_sock = sk_next(s);
	    next2: ;
	    }

	  stored_sock = current_sock;
1619 1620 1621
	}
    }
}
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631

void
test_old_bird(char *path)
{
  int fd;
  struct sockaddr_un sa;

  fd = socket(AF_UNIX, SOCK_STREAM, 0);
  if (fd < 0)
    die("Cannot create socket: %m");
1632 1633
  if (strlen(path) >= sizeof(sa.sun_path))
    die("Socket path too long");
1634 1635 1636 1637 1638 1639 1640 1641 1642
  bzero(&sa, sizeof(sa));
  sa.sun_family = AF_UNIX;
  strcpy(sa.sun_path, path);
  if (connect(fd, (struct sockaddr *) &sa, SUN_LEN(&sa)) == 0)
    die("I found another BIRD running.");
  close(fd);
}