io.c 34.2 KB
Newer Older
1 2 3
/*
 *	BIRD Internet Routing Daemon -- Unix I/O
 *
4
 *	(c) 1998--2004 Martin Mares <mj@ucw.cz>
5
 *      (c) 2004       Ondrej Filip <feela@network.cz>
6 7 8 9
 *
 *	Can be freely distributed and used under the terms of the GNU GPL.
 */

10 11 12 13
/* Unfortunately, some glibc versions hide parts of RFC 3542 API
   if _GNU_SOURCE is not defined. */
#define _GNU_SOURCE 1

14 15
#include <stdio.h>
#include <stdlib.h>
16
#include <time.h>
17 18 19 20
#include <sys/time.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/fcntl.h>
21
#include <sys/uio.h>
22
#include <sys/un.h>
23 24
#include <unistd.h>
#include <errno.h>
Ondřej Zajíček's avatar
Ondřej Zajíček committed
25
#include <netinet/in.h>
26
#include <netinet/icmp6.h>
27 28 29 30 31 32

#include "nest/bird.h"
#include "lib/lists.h"
#include "lib/resource.h"
#include "lib/timer.h"
#include "lib/socket.h"
33
#include "lib/event.h"
34
#include "lib/string.h"
35 36 37
#include "nest/iface.h"

#include "lib/unix.h"
38
#include "lib/sysio.h"
39

40
/* Maximum number of calls of tx handler for one socket in one
41 42 43 44 45
 * select iteration. Should be small enough to not monopolize CPU by
 * one protocol instance.
 */
#define MAX_STEPS 4

46 47 48 49 50
/* Maximum number of calls of rx handler for all sockets in one select
   iteration. RX callbacks are often much more costly so we limit
   this to gen small latencies */
#define MAX_RX_STEPS 4

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
/*
 *	Tracked Files
 */

struct rfile {
  resource r;
  FILE *f;
};

static void
rf_free(resource *r)
{
  struct rfile *a = (struct rfile *) r;

  fclose(a->f);
}

static void
rf_dump(resource *r)
{
  struct rfile *a = (struct rfile *) r;

  debug("(FILE *%p)\n", a->f);
}

static struct resclass rf_class = {
  "FILE",
  sizeof(struct rfile),
  rf_free,
80
  rf_dump,
81
  NULL,
82
  NULL
83 84 85
};

void *
86
tracked_fopen(pool *p, char *name, char *mode)
87 88 89 90 91 92 93 94 95 96 97
{
  FILE *f = fopen(name, mode);

  if (f)
    {
      struct rfile *r = ralloc(p, &rf_class);
      r->f = f;
    }
  return f;
}

98 99 100 101 102
/**
 * DOC: Timers
 *
 * Timers are resources which represent a wish of a module to call
 * a function at the specified time. The platform dependent code
Martin Mareš's avatar
Martin Mareš committed
103
 * doesn't guarantee exact timing, only that a timer function
104 105
 * won't be called before the requested time.
 *
106 107 108 109 110
 * In BIRD, time is represented by values of the &bird_clock_t type
 * which are integral numbers interpreted as a relative number of seconds since
 * some fixed time point in past. The current time can be read
 * from variable @now with reasonable accuracy and is monotonic. There is also
 * a current 'absolute' time in variable @now_real reported by OS.
111 112 113 114 115
 *
 * Each timer is described by a &timer structure containing a pointer
 * to the handler function (@hook), data private to this function (@data),
 * time the function should be called at (@expires, 0 for inactive timers),
 * for the other fields see |timer.h|.
116 117 118 119 120 121 122
 */

#define NEAR_TIMER_LIMIT 4

static list near_timers, far_timers;
static bird_clock_t first_far_timer = TIME_INFINITY;

123 124
/* now must be different from 0, because 0 is a special value in timer->expires */
bird_clock_t now = 1, now_real;
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

static void
update_times_plain(void)
{
  bird_clock_t new_time = time(NULL);
  int delta = new_time - now_real;

  if ((delta >= 0) && (delta < 60))
    now += delta;
  else if (now_real != 0)
   log(L_WARN "Time jump, delta %d s", delta);

  now_real = new_time;
}

static void
update_times_gettime(void)
{
  struct timespec ts;
  int rv;

  rv = clock_gettime(CLOCK_MONOTONIC, &ts);
  if (rv != 0)
    die("clock_gettime: %m");

  if (ts.tv_sec != now) {
    if (ts.tv_sec < now)
      log(L_ERR "Monotonic timer is broken");

    now = ts.tv_sec;
    now_real = time(NULL);
  }
}

static int clock_monotonic_available;

static inline void
update_times(void)
{
  if (clock_monotonic_available)
    update_times_gettime();
  else
    update_times_plain();
}

static inline void
init_times(void)
{
 struct timespec ts;
 clock_monotonic_available = (clock_gettime(CLOCK_MONOTONIC, &ts) == 0);
 if (!clock_monotonic_available)
   log(L_WARN "Monotonic timer is missing");
}

179 180 181 182 183 184 185 186 187 188 189 190 191 192

static void
tm_free(resource *r)
{
  timer *t = (timer *) r;

  tm_stop(t);
}

static void
tm_dump(resource *r)
{
  timer *t = (timer *) r;

193
  debug("(code %p, data %p, ", t->hook, t->data);
194 195 196 197
  if (t->randomize)
    debug("rand %d, ", t->randomize);
  if (t->recurrent)
    debug("recur %d, ", t->recurrent);
198 199 200 201 202 203 204 205 206 207
  if (t->expires)
    debug("expires in %d sec)\n", t->expires - now);
  else
    debug("inactive)\n");
}

static struct resclass tm_class = {
  "Timer",
  sizeof(timer),
  tm_free,
208
  tm_dump,
209
  NULL,
210
  NULL
211 212
};

213 214 215 216 217 218 219 220
/**
 * tm_new - create a timer
 * @p: pool
 *
 * This function creates a new timer resource and returns
 * a pointer to it. To use the timer, you need to fill in
 * the structure fields and call tm_start() to start timing.
 */
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
timer *
tm_new(pool *p)
{
  timer *t = ralloc(p, &tm_class);
  return t;
}

static inline void
tm_insert_near(timer *t)
{
  node *n = HEAD(near_timers);

  while (n->next && (SKIP_BACK(timer, n, n)->expires < t->expires))
    n = n->next;
  insert_node(&t->n, n->prev);
}

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
/**
 * tm_start - start a timer
 * @t: timer
 * @after: number of seconds the timer should be run after
 *
 * This function schedules the hook function of the timer to
 * be called after @after seconds. If the timer has been already
 * started, it's @expire time is replaced by the new value.
 *
 * You can have set the @randomize field of @t, the timeout
 * will be increased by a random number of seconds chosen
 * uniformly from range 0 .. @randomize.
 *
 * You can call tm_start() from the handler function of the timer
 * to request another run of the timer. Also, you can set the @recurrent
 * field to have the timer re-added automatically with the same timeout.
 */
255 256 257 258 259 260
void
tm_start(timer *t, unsigned after)
{
  bird_clock_t when;

  if (t->randomize)
261
    after += random() % (t->randomize + 1);
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
  when = now + after;
  if (t->expires == when)
    return;
  if (t->expires)
    rem_node(&t->n);
  t->expires = when;
  if (after <= NEAR_TIMER_LIMIT)
    tm_insert_near(t);
  else
    {
      if (!first_far_timer || first_far_timer > when)
	first_far_timer = when;
      add_tail(&far_timers, &t->n);
    }
}

278 279 280 281 282 283 284
/**
 * tm_stop - stop a timer
 * @t: timer
 *
 * This function stops a timer. If the timer is already stopped,
 * nothing happens.
 */
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
void
tm_stop(timer *t)
{
  if (t->expires)
    {
      rem_node(&t->n);
      t->expires = 0;
    }
}

static void
tm_dump_them(char *name, list *l)
{
  node *n;
  timer *t;

  debug("%s timers:\n", name);
  WALK_LIST(n, *l)
    {
      t = SKIP_BACK(timer, n, n);
      debug("%p ", t);
      tm_dump(&t->r);
    }
  debug("\n");
}

void
tm_dump_all(void)
{
  tm_dump_them("Near", &near_timers);
  tm_dump_them("Far", &far_timers);
}

static inline time_t
tm_first_shot(void)
{
  time_t x = first_far_timer;

  if (!EMPTY_LIST(near_timers))
    {
      timer *t = SKIP_BACK(timer, n, HEAD(near_timers));
      if (t->expires < x)
	x = t->expires;
    }
  return x;
}

static void
tm_shot(void)
{
  timer *t;
  node *n, *m;

  if (first_far_timer <= now)
    {
340
      bird_clock_t limit = now + NEAR_TIMER_LIMIT;
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
      first_far_timer = TIME_INFINITY;
      n = HEAD(far_timers);
      while (m = n->next)
	{
	  t = SKIP_BACK(timer, n, n);
	  if (t->expires <= limit)
	    {
	      rem_node(n);
	      tm_insert_near(t);
	    }
	  else if (t->expires < first_far_timer)
	    first_far_timer = t->expires;
	  n = m;
	}
    }
  while ((n = HEAD(near_timers)) -> next)
    {
358
      int delay;
359 360 361 362
      t = SKIP_BACK(timer, n, n);
      if (t->expires > now)
	break;
      rem_node(n);
363
      delay = t->expires - now;
364
      t->expires = 0;
365 366 367 368 369 370 371
      if (t->recurrent)
	{
	  int i = t->recurrent - delay;
	  if (i < 0)
	    i = 0;
	  tm_start(t, i);
	}
372 373 374 375
      t->hook(t);
    }
}

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
/**
 * tm_parse_datetime - parse a date and time
 * @x: datetime string
 *
 * tm_parse_datetime() takes a textual representation of
 * a date and time (dd-mm-yyyy hh:mm:ss)
 * and converts it to the corresponding value of type &bird_clock_t.
 */
bird_clock_t
tm_parse_datetime(char *x)
{
  struct tm tm;
  int n;
  time_t t;

  if (sscanf(x, "%d-%d-%d %d:%d:%d%n", &tm.tm_mday, &tm.tm_mon, &tm.tm_year, &tm.tm_hour, &tm.tm_min, &tm.tm_sec, &n) != 6 || x[n])
    return tm_parse_date(x);
  tm.tm_mon--;
  tm.tm_year -= 1900;
  t = mktime(&tm);
  if (t == (time_t) -1)
    return 0;
  return t;
}
400 401 402 403 404 405 406
/**
 * tm_parse_date - parse a date
 * @x: date string
 *
 * tm_parse_date() takes a textual representation of a date (dd-mm-yyyy)
 * and converts it to the corresponding value of type &bird_clock_t.
 */
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
bird_clock_t
tm_parse_date(char *x)
{
  struct tm tm;
  int n;
  time_t t;

  if (sscanf(x, "%d-%d-%d%n", &tm.tm_mday, &tm.tm_mon, &tm.tm_year, &n) != 3 || x[n])
    return 0;
  tm.tm_mon--;
  tm.tm_year -= 1900;
  tm.tm_hour = tm.tm_min = tm.tm_sec = 0;
  t = mktime(&tm);
  if (t == (time_t) -1)
    return 0;
  return t;
}

425 426
static void
tm_format_reltime(char *x, struct tm *tm, bird_clock_t delta)
427
{
428 429
  static char *month_names[12] = { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
				   "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
430

431 432 433 434 435 436
  if (delta < 20*3600)
    bsprintf(x, "%02d:%02d", tm->tm_hour, tm->tm_min);
  else if (delta < 360*86400)
    bsprintf(x, "%s%02d", month_names[tm->tm_mon], tm->tm_mday);
  else
    bsprintf(x, "%d", tm->tm_year+1900);
437 438
}

439 440
#include "conf/conf.h"

441 442 443 444 445
/**
 * tm_format_datetime - convert date and time to textual representation
 * @x: destination buffer of size %TM_DATETIME_BUFFER_SIZE
 * @t: time
 *
446 447
 * This function formats the given relative time value @t to a textual
 * date/time representation (dd-mm-yyyy hh:mm:ss) in real time.
448
 */
449
void
450
tm_format_datetime(char *x, struct timeformat *fmt_spec, bird_clock_t t)
451
{
452
  const char *fmt_used;
453
  struct tm *tm;
454 455
  bird_clock_t delta = now - t;
  t = now_real - delta;
456 457
  tm = localtime(&t);

458 459
  if (fmt_spec->fmt1 == NULL)
    return tm_format_reltime(x, tm, delta);
460

461 462
  if ((fmt_spec->limit == 0) || (delta < fmt_spec->limit))
    fmt_used = fmt_spec->fmt1;
463
  else
464 465 466 467 468
    fmt_used = fmt_spec->fmt2;

  int rv = strftime(x, TM_DATETIME_BUFFER_SIZE, fmt_used, tm);
  if (((rv == 0) && fmt_used[0]) || (rv == TM_DATETIME_BUFFER_SIZE))
    strcpy(x, "<too-long>");
469 470
}

471 472 473 474 475 476 477 478 479 480
/**
 * DOC: Sockets
 *
 * Socket resources represent network connections. Their data structure (&socket)
 * contains a lot of fields defining the exact type of the socket, the local and
 * remote addresses and ports, pointers to socket buffers and finally pointers to
 * hook functions to be called when new data have arrived to the receive buffer
 * (@rx_hook), when the contents of the transmit buffer have been transmitted
 * (@tx_hook) and when an error or connection close occurs (@err_hook).
 *
481
 * Freeing of sockets from inside socket hooks is perfectly safe.
482 483
 */

484 485 486 487
#ifndef SOL_IP
#define SOL_IP IPPROTO_IP
#endif

488 489 490 491
#ifndef SOL_IPV6
#define SOL_IPV6 IPPROTO_IPV6
#endif

492
static list sock_list;
493
static struct birdsock *current_sock;
494
static struct birdsock *stored_sock;
495 496 497 498 499 500 501 502 503 504
static int sock_recalc_fdsets_p;

static inline sock *
sk_next(sock *s)
{
  if (!s->n.next->next)
    return NULL;
  else
    return SKIP_BACK(sock, n, s->n.next);
}
505 506

static void
507
sk_alloc_bufs(sock *s)
508
{
509 510 511 512 513 514 515
  if (!s->rbuf && s->rbsize)
    s->rbuf = s->rbuf_alloc = xmalloc(s->rbsize);
  s->rpos = s->rbuf;
  if (!s->tbuf && s->tbsize)
    s->tbuf = s->tbuf_alloc = xmalloc(s->tbsize);
  s->tpos = s->ttx = s->tbuf;
}
516

517 518 519
static void
sk_free_bufs(sock *s)
{
520
  if (s->rbuf_alloc)
521 522 523 524
    {
      xfree(s->rbuf_alloc);
      s->rbuf = s->rbuf_alloc = NULL;
    }
525
  if (s->tbuf_alloc)
526 527 528 529 530 531 532 533 534 535 536 537
    {
      xfree(s->tbuf_alloc);
      s->tbuf = s->tbuf_alloc = NULL;
    }
}

static void
sk_free(resource *r)
{
  sock *s = (sock *) r;

  sk_free_bufs(s);
538
  if (s->fd >= 0)
539 540
    {
      close(s->fd);
541 542
      if (s == current_sock)
	current_sock = sk_next(s);
543 544
      if (s == stored_sock)
	stored_sock = sk_next(s);
545
      rem_node(&s->n);
546
      sock_recalc_fdsets_p = 1;
547
    }
548 549
}

550 551 552 553 554 555 556
void
sk_reallocate(sock *s)
{
  sk_free_bufs(s);
  sk_alloc_bufs(s);
}

557 558 559 560
static void
sk_dump(resource *r)
{
  sock *s = (sock *) r;
561
  static char *sk_type_names[] = { "TCP<", "TCP>", "TCP", "UDP", "UDP/MC", "IP", "IP/MC", "MAGIC", "UNIX<", "UNIX", "DEL!" };
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578

  debug("(%s, ud=%p, sa=%08x, sp=%d, da=%08x, dp=%d, tos=%d, ttl=%d, if=%s)\n",
	sk_type_names[s->type],
	s->data,
	s->saddr,
	s->sport,
	s->daddr,
	s->dport,
	s->tos,
	s->ttl,
	s->iface ? s->iface->name : "none");
}

static struct resclass sk_class = {
  "Socket",
  sizeof(sock),
  sk_free,
579
  sk_dump,
580
  NULL,
581
  NULL
582 583
};

584 585 586 587 588 589 590 591
/**
 * sk_new - create a socket
 * @p: pool
 *
 * This function creates a new socket resource. If you want to use it,
 * you need to fill in all the required fields of the structure and
 * call sk_open() to do the actual opening of the socket.
 */
592 593 594 595 596
sock *
sk_new(pool *p)
{
  sock *s = ralloc(p, &sk_class);
  s->pool = p;
597
  // s->saddr = s->daddr = IPA_NONE;
598 599 600 601 602
  s->tos = s->ttl = -1;
  s->fd = -1;
  return s;
}

603 604 605 606 607 608
static void
sk_insert(sock *s)
{
  add_tail(&sock_list, &s->n);
  sock_recalc_fdsets_p = 1;
}
609

610 611 612 613 614
#ifdef IPV6

void
fill_in_sockaddr(sockaddr *sa, ip_addr a, unsigned port)
{
615
  memset (sa, 0, sizeof (struct sockaddr_in6));
616 617 618
  sa->sin6_family = AF_INET6;
  sa->sin6_port = htons(port);
  sa->sin6_flowinfo = 0;
619 620 621
#ifdef HAVE_SIN_LEN
  sa->sin6_len = sizeof(struct sockaddr_in6);
#endif
622 623 624
  set_inaddr(&sa->sin6_addr, a);
}

625 626 627 628 629 630
static inline void
fill_in_sockifa(sockaddr *sa, struct iface *ifa)
{
  sa->sin6_scope_id = ifa ? ifa->index : 0;
}

631
void
632
get_sockaddr(struct sockaddr_in6 *sa, ip_addr *a, unsigned *port, int check)
633
{
634 635
  if (check && sa->sin6_family != AF_INET6)
    bug("get_sockaddr called for wrong address family (%d)", sa->sin6_family);
636 637 638 639 640 641 642 643
  if (port)
    *port = ntohs(sa->sin6_port);
  memcpy(a, &sa->sin6_addr, sizeof(*a));
  ipa_ntoh(*a);
}

#else

644
void
645
fill_in_sockaddr(sockaddr *sa, ip_addr a, unsigned port)
646
{
647
  memset (sa, 0, sizeof (struct sockaddr_in));
648 649
  sa->sin_family = AF_INET;
  sa->sin_port = htons(port);
650 651 652
#ifdef HAVE_SIN_LEN
  sa->sin_len = sizeof(struct sockaddr_in);
#endif
653 654 655
  set_inaddr(&sa->sin_addr, a);
}

656
static inline void
657
fill_in_sockifa(sockaddr *sa UNUSED, struct iface *ifa UNUSED)
658 659 660
{
}

661
void
662
get_sockaddr(struct sockaddr_in *sa, ip_addr *a, unsigned *port, int check)
663
{
664 665
  if (check && sa->sin_family != AF_INET)
    bug("get_sockaddr called for wrong address family (%d)", sa->sin_family);
666 667
  if (port)
    *port = ntohs(sa->sin_port);
668
  memcpy(a, &sa->sin_addr.s_addr, sizeof(*a));
669
  ipa_ntoh(*a);
670 671
}

672 673
#endif

674 675 676 677 678 679 680

#ifdef IPV6

/* PKTINFO handling is also standardized in IPv6 */
#define CMSG_RX_SPACE CMSG_SPACE(sizeof(struct in6_pktinfo))
#define CMSG_TX_SPACE CMSG_SPACE(sizeof(struct in6_pktinfo))

681 682 683 684 685 686 687 688 689 690
/*
 * RFC 2292 uses IPV6_PKTINFO for both the socket option and the cmsg
 * type, RFC 3542 changed the socket option to IPV6_RECVPKTINFO. If we
 * don't have IPV6_RECVPKTINFO we suppose the OS implements the older
 * RFC and we use IPV6_PKTINFO.
 */
#ifndef IPV6_RECVPKTINFO
#define IPV6_RECVPKTINFO IPV6_PKTINFO
#endif

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
static char *
sysio_register_cmsgs(sock *s)
{
  int ok = 1;
  if ((s->flags & SKF_LADDR_RX) &&
      setsockopt(s->fd, IPPROTO_IPV6, IPV6_RECVPKTINFO, &ok, sizeof(ok)) < 0)
    return "IPV6_RECVPKTINFO";

  return NULL;
}

static void
sysio_process_rx_cmsgs(sock *s, struct msghdr *msg)
{
  struct cmsghdr *cm;
  struct in6_pktinfo *pi = NULL;

  if (!(s->flags & SKF_LADDR_RX))
    return;

  for (cm = CMSG_FIRSTHDR(msg); cm != NULL; cm = CMSG_NXTHDR(msg, cm))
    {
      if (cm->cmsg_level == IPPROTO_IPV6 && cm->cmsg_type == IPV6_PKTINFO)
	pi = (struct in6_pktinfo *) CMSG_DATA(cm);
    }

  if (!pi)
    {
      s->laddr = IPA_NONE;
      s->lifindex = 0;
      return;
    }

  get_inaddr(&s->laddr, &pi->ipi6_addr);
  s->lifindex = pi->ipi6_ifindex;
  return;
}

Ondřej Zajíček's avatar
Ondřej Zajíček committed
729
/*
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
static void
sysio_prepare_tx_cmsgs(sock *s, struct msghdr *msg, void *cbuf, size_t cbuflen)
{
  struct cmsghdr *cm;
  struct in6_pktinfo *pi;

  if (!(s->flags & SKF_LADDR_TX))
    return;

  msg->msg_control = cbuf;
  msg->msg_controllen = cbuflen;

  cm = CMSG_FIRSTHDR(msg);
  cm->cmsg_level = IPPROTO_IPV6;
  cm->cmsg_type = IPV6_PKTINFO;
  cm->cmsg_len = CMSG_LEN(sizeof(*pi));

  pi = (struct in6_pktinfo *) CMSG_DATA(cm);
  set_inaddr(&pi->ipi6_addr, s->saddr);
  pi->ipi6_ifindex = s->iface ? s->iface->index : 0;

  msg->msg_controllen = cm->cmsg_len;
  return;
}
Ondřej Zajíček's avatar
Ondřej Zajíček committed
754
*/
755 756
#endif

757 758 759 760
static char *
sk_set_ttl_int(sock *s)
{
#ifdef IPV6
761
  if (setsockopt(s->fd, SOL_IPV6, IPV6_UNICAST_HOPS, &s->ttl, sizeof(s->ttl)) < 0)
762 763 764 765 766
    return "IPV6_UNICAST_HOPS";
#else
  if (setsockopt(s->fd, SOL_IP, IP_TTL, &s->ttl, sizeof(s->ttl)) < 0)
    return "IP_TTL";
#ifdef CONFIG_UNIX_DONTROUTE
767
  int one = 1;
768 769 770 771 772 773 774
  if (s->ttl == 1 && setsockopt(s->fd, SOL_SOCKET, SO_DONTROUTE, &one, sizeof(one)) < 0)
    return "SO_DONTROUTE";
#endif 
#endif
  return NULL;
}

775 776 777
#define ERR(x) do { err = x; goto bad; } while(0)
#define WARN(x) log(L_WARN "sk_setup: %s: %m", x)

778 779 780 781
static char *
sk_setup(sock *s)
{
  int fd = s->fd;
782
  char *err = NULL;
783 784 785

  if (fcntl(fd, F_SETFL, O_NONBLOCK) < 0)
    ERR("fcntl(O_NONBLOCK)");
786 787
  if (s->type == SK_UNIX)
    return NULL;
788
#ifndef IPV6
789
  if ((s->tos >= 0) && setsockopt(fd, SOL_IP, IP_TOS, &s->tos, sizeof(s->tos)) < 0)
790
    WARN("IP_TOS");
791
#endif
792 793 794 795 796 797 798

#ifdef IPV6
  int v = 1;
  if ((s->flags & SKF_V6ONLY) && setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, &v, sizeof(v)) < 0)
    WARN("IPV6_V6ONLY");
#endif

799 800 801
  if (s->ttl >= 0)
    err = sk_set_ttl_int(s);

802
  sysio_register_cmsgs(s);
803 804 805 806
bad:
  return err;
}

807
/**
808
 * sk_set_ttl - set transmit TTL for given socket.
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
 * @s: socket
 * @ttl: TTL value
 *
 * Set TTL for already opened connections when TTL was not set before.
 * Useful for accepted connections when different ones should have 
 * different TTL.
 *
 * Result: 0 for success, -1 for an error.
 */

int
sk_set_ttl(sock *s, int ttl)
{
  char *err;

  s->ttl = ttl;
  if (err = sk_set_ttl_int(s))
    log(L_ERR "sk_set_ttl: %s: %m", err);

  return (err ? -1 : 0);
}

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
/**
 * sk_set_min_ttl - set minimal accepted TTL for given socket.
 * @s: socket
 * @ttl: TTL value
 *
 * Can be used in TTL security implementation
 *
 * Result: 0 for success, -1 for an error.
 */

int
sk_set_min_ttl(sock *s, int ttl)
{
  int err;
#ifdef IPV6
  err = sk_set_min_ttl6(s, ttl);
#else
  err = sk_set_min_ttl4(s, ttl);
#endif

  return err;
}
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879

/**
 * sk_set_md5_auth - add / remove MD5 security association for given socket.
 * @s: socket
 * @a: IP address of the other side
 * @passwd: password used for MD5 authentication
 *
 * In TCP MD5 handling code in kernel, there is a set of pairs
 * (address, password) used to choose password according to
 * address of the other side. This function is useful for
 * listening socket, for active sockets it is enough to set
 * s->password field.
 *
 * When called with passwd != NULL, the new pair is added,
 * When called with passwd == NULL, the existing pair is removed.
 *
 * Result: 0 for success, -1 for an error.
 */

int
sk_set_md5_auth(sock *s, ip_addr a, char *passwd)
{
  sockaddr sa;
  fill_in_sockaddr(&sa, a, 0);
  return sk_set_md5_auth_int(s, &sa, passwd);
}

880 881 882 883
int
sk_set_broadcast(sock *s, int enable)
{
  if (setsockopt(s->fd, SOL_SOCKET, SO_BROADCAST, &enable, sizeof(enable)) < 0)
884 885 886 887 888 889
    {
      log(L_ERR "sk_set_broadcast: SO_BROADCAST: %m");
      return -1;
    }

  return 0;
890 891 892 893 894
}


#ifdef IPV6

895 896 897 898 899 900 901 902 903 904 905 906
int
sk_set_ipv6_checksum(sock *s, int offset)
{
  if (setsockopt(s->fd, IPPROTO_IPV6, IPV6_CHECKSUM, &offset, sizeof(offset)) < 0)
    {
      log(L_ERR "sk_set_ipv6_checksum: IPV6_CHECKSUM: %m");
      return -1;
    }

  return 0;
}

907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
int
sk_set_icmp_filter(sock *s, int p1, int p2)
{
  /* a bit of lame interface, but it is here only for Radv */
  struct icmp6_filter f;

  ICMP6_FILTER_SETBLOCKALL(&f);
  ICMP6_FILTER_SETPASS(p1, &f);
  ICMP6_FILTER_SETPASS(p2, &f);

  if (setsockopt(s->fd, IPPROTO_ICMPV6, ICMP6_FILTER, &f, sizeof(f)) < 0)
    {
      log(L_ERR "sk_setup_icmp_filter: ICMP6_FILTER: %m");
      return -1;
    }

  return 0;
}

926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
int
sk_setup_multicast(sock *s)
{
  char *err;
  int zero = 0;
  int index;

  ASSERT(s->iface && s->iface->addr);

  index = s->iface->index;
  if (setsockopt(s->fd, SOL_IPV6, IPV6_MULTICAST_HOPS, &s->ttl, sizeof(s->ttl)) < 0)
    ERR("IPV6_MULTICAST_HOPS");
  if (setsockopt(s->fd, SOL_IPV6, IPV6_MULTICAST_LOOP, &zero, sizeof(zero)) < 0)
    ERR("IPV6_MULTICAST_LOOP");
  if (setsockopt(s->fd, SOL_IPV6, IPV6_MULTICAST_IF, &index, sizeof(index)) < 0)
    ERR("IPV6_MULTICAST_IF");

943 944 945
  if (err = sysio_bind_to_iface(s))
    goto bad;

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
  return 0;

bad:
  log(L_ERR "sk_setup_multicast: %s: %m", err);
  return -1;
}

int
sk_join_group(sock *s, ip_addr maddr)
{
  struct ipv6_mreq mreq;
	
  set_inaddr(&mreq.ipv6mr_multiaddr, maddr);

#ifdef CONFIG_IPV6_GLIBC_20
  mreq.ipv6mr_ifindex = s->iface->index;
#else
  mreq.ipv6mr_interface = s->iface->index;
#endif

966
  if (setsockopt(s->fd, SOL_IPV6, IPV6_JOIN_GROUP, &mreq, sizeof(mreq)) < 0)
967
    {
968
      log(L_ERR "sk_join_group: IPV6_JOIN_GROUP: %m");
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
      return -1;
    }

  return 0;
}

int
sk_leave_group(sock *s, ip_addr maddr)
{
  struct ipv6_mreq mreq;
	
  set_inaddr(&mreq.ipv6mr_multiaddr, maddr);

#ifdef CONFIG_IPV6_GLIBC_20
  mreq.ipv6mr_ifindex = s->iface->index;
#else
  mreq.ipv6mr_interface = s->iface->index;
#endif

988
  if (setsockopt(s->fd, SOL_IPV6, IPV6_LEAVE_GROUP, &mreq, sizeof(mreq)) < 0)
989
    {
990
      log(L_ERR "sk_leave_group: IPV6_LEAVE_GROUP: %m");
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
      return -1;
    }

  return 0;
}

#else /* IPV4 */

int
sk_setup_multicast(sock *s)
{
  char *err;

  ASSERT(s->iface && s->iface->addr);

  if (err = sysio_setup_multicast(s))
    {
      log(L_ERR "sk_setup_multicast: %s: %m", err);
      return -1;
    }

  return 0;
}

int
sk_join_group(sock *s, ip_addr maddr)
{
 char *err;

 if (err = sysio_join_group(s, maddr))
    {
      log(L_ERR "sk_join_group: %s: %m", err);
      return -1;
    }

  return 0;
}

int
sk_leave_group(sock *s, ip_addr maddr)
{
 char *err;

 if (err = sysio_leave_group(s, maddr))
    {
      log(L_ERR "sk_leave_group: %s: %m", err);
      return -1;
    }

  return 0;
}

#endif 

1045

1046
static void
1047 1048
sk_tcp_connected(sock *s)
{
1049 1050 1051 1052 1053
  sockaddr lsa;
  int lsa_len = sizeof(lsa);
  if (getsockname(s->fd, (struct sockaddr *) &lsa, &lsa_len) == 0)
    get_sockaddr(&lsa, &s->saddr, &s->sport, 1);

1054 1055
  s->type = SK_TCP;
  sk_alloc_bufs(s);
1056
  s->tx_hook(s);
1057 1058
}

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
static int
sk_passive_connected(sock *s, struct sockaddr *sa, int al, int type)
{
  int fd = accept(s->fd, sa, &al);
  if (fd >= 0)
    {
      sock *t = sk_new(s->pool);
      char *err;
      t->type = type;
      t->fd = fd;
1069 1070 1071 1072 1073
      t->ttl = s->ttl;
      t->tos = s->tos;
      t->rbsize = s->rbsize;
      t->tbsize = s->tbsize;
      if (type == SK_TCP)
1074 1075 1076 1077 1078 1079 1080 1081
	{
	  sockaddr lsa;
	  int lsa_len = sizeof(lsa);
	  if (getsockname(fd, (struct sockaddr *) &lsa, &lsa_len) == 0)
	    get_sockaddr(&lsa, &t->saddr, &t->sport, 1);

	  get_sockaddr((sockaddr *) sa, &t->daddr, &t->dport, 1);
	}
1082
      sk_insert(t);
1083 1084 1085
      if (err = sk_setup(t))
	{
	  log(L_ERR "Incoming connection: %s: %m", err);
1086 1087
	  rfree(t);
	  return 1;
1088 1089
	}
      sk_alloc_bufs(t);
1090
      s->rx_hook(t, 0);
1091 1092 1093 1094
      return 1;
    }
  else if (errno != EINTR && errno != EAGAIN)
    {
1095
      s->err_hook(s, errno);
1096 1097 1098 1099
    }
  return 0;
}

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
/**
 * sk_open - open a socket
 * @s: socket
 *
 * This function takes a socket resource created by sk_new() and
 * initialized by the user and binds a corresponding network connection
 * to it.
 *
 * Result: 0 for success, -1 for an error.
 */
1110 1111 1112
int
sk_open(sock *s)
{
1113
  int fd;
1114
  sockaddr sa;
1115 1116 1117 1118 1119 1120 1121 1122
  int one = 1;
  int type = s->type;
  int has_src = ipa_nonzero(s->saddr) || s->sport;
  char *err;

  switch (type)
    {
    case SK_TCP_ACTIVE:
1123 1124
      s->ttx = "";			/* Force s->ttx != s->tpos */
      /* Fall thru */
1125
    case SK_TCP_PASSIVE:
1126
      fd = socket(BIRD_PF, SOCK_STREAM, IPPROTO_TCP);
1127 1128
      break;
    case SK_UDP:
1129
      fd = socket(BIRD_PF, SOCK_DGRAM, IPPROTO_UDP);
1130 1131
      break;
    case SK_IP:
1132
      fd = socket(BIRD_PF, SOCK_RAW, s->dport);
1133
      break;
1134 1135 1136
    case SK_MAGIC:
      fd = s->fd;
      break;
1137
    default:
1138
      bug("sk_open() called for invalid sock type %d", type);
1139 1140 1141 1142 1143 1144 1145
    }
  if (fd < 0)
    die("sk_open: socket: %m");
  s->fd = fd;

  if (err = sk_setup(s))
    goto bad;
1146

1147 1148 1149 1150
  if (has_src)
    {
      int port;

1151
      if (type == SK_IP)
1152 1153 1154 1155 1156 1157 1158 1159
	port = 0;
      else
	{
	  port = s->sport;
	  if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)) < 0)
	    ERR("SO_REUSEADDR");
	}
      fill_in_sockaddr(&sa, s->saddr, port);
1160
      fill_in_sockifa(&sa, s->iface);
1161 1162 1163 1164
      if (bind(fd, (struct sockaddr *) &sa, sizeof(sa)) < 0)
	ERR("bind");
    }
  fill_in_sockaddr(&sa, s->daddr, s->dport);
1165 1166 1167 1168 1169 1170 1171 1172

  if (s->password)
    {
      int rv = sk_set_md5_auth_int(s, &sa, s->password);
      if (rv < 0)
	goto bad_no_log;
    }

1173 1174 1175 1176 1177
  switch (type)
    {
    case SK_TCP_ACTIVE:
      if (connect(fd, (struct sockaddr *) &sa, sizeof(sa)) >= 0)
	sk_tcp_connected(s);
1178
      else if (errno != EINTR && errno != EAGAIN && errno != EINPROGRESS &&
1179
	       errno != ECONNREFUSED && errno != EHOSTUNREACH && errno != ENETUNREACH)
1180 1181 1182 1183 1184 1185
	ERR("connect");
      break;
    case SK_TCP_PASSIVE:
      if (listen(fd, 8))
	ERR("listen");
      break;
1186 1187 1188
    case SK_MAGIC:
      break;
    default:
1189
      sk_alloc_bufs(s);
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
#ifdef IPV6
#ifdef IPV6_MTU_DISCOVER
      {
	int dont = IPV6_PMTUDISC_DONT;
	if (setsockopt(fd, SOL_IPV6, IPV6_MTU_DISCOVER, &dont, sizeof(dont)) < 0)
	  ERR("IPV6_MTU_DISCOVER");
      }
#endif
#else
#ifdef IP_PMTUDISC
      {
	int dont = IP_PMTUDISC_DONT;
	if (setsockopt(fd, SOL_IP, IP_PMTUDISC, &dont, sizeof(dont)) < 0)
	  ERR("IP_PMTUDISC");
      }
#endif
#endif
1207 1208
    }

1209
  sk_insert(s);
1210 1211 1212 1213
  return 0;

bad:
  log(L_ERR "sk_open: %s: %m", err);
1214
bad_no_log:
1215 1216 1217 1218 1219
  close(fd);
  s->fd = -1;
  return -1;
}

1220
void
1221 1222 1223 1224 1225 1226 1227 1228
sk_open_unix(sock *s, char *name)
{
  int fd;
  struct sockaddr_un sa;
  char *err;

  fd = socket(AF_UNIX, SOCK_STREAM, 0);
  if (fd < 0)
1229
    ERR("socket");
1230 1231 1232 1233
  s->fd = fd;
  if (err = sk_setup(s))
    goto bad;
  unlink(name);
1234

1235
  /* Path length checked in test_old_bird() */
1236
  sa.sun_family = AF_UNIX;
1237
  strcpy(sa.sun_path, name);
1238
  if (bind(fd, (struct sockaddr *) &sa, SUN_LEN(&sa)) < 0)
1239 1240 1241
    ERR("bind");
  if (listen(fd, 8))
    ERR("listen");
1242
  sk_insert(s);
1243
  return;
1244

1245
 bad:
1246
  log(L_ERR "sk_open_unix: %s: %m", err);
1247
  die("Unable to create control socket %s", name);
1248 1249
}

1250 1251
static inline void reset_tx_buffer(sock *s) { s->ttx = s->tpos = s->tbuf; }

1252 1253 1254 1255 1256 1257 1258 1259
static int
sk_maybe_write(sock *s)
{
  int e;

  switch (s->type)
    {
    case SK_TCP:
1260
    case SK_MAGIC:
1261
    case SK_UNIX:
1262 1263 1264 1265 1266 1267 1268
      while (s->ttx != s->tpos)
	{
	  e = write(s->fd, s->ttx, s->tpos - s->ttx);
	  if (e < 0)
	    {
	      if (errno != EINTR && errno != EAGAIN)
		{
1269
		  reset_tx_buffer(s);
1270 1271
		  /* EPIPE is just a connection close notification during TX */
		  s->err_hook(s, (errno != EPIPE) ? errno : 0);
1272 1273 1274 1275 1276 1277
		  return -1;
		}
	      return 0;
	    }
	  s->ttx += e;
	}
1278
      reset_tx_buffer(s);
1279 1280 1281 1282 1283 1284
      return 1;
    case SK_UDP:
    case SK_IP:
      {
	if (s->tbuf == s->tpos)
	  return 1;
1285

1286 1287
	sockaddr sa;
	fill_in_sockaddr(&sa, s->daddr, s->dport);
1288
	fill_in_sockifa(&sa, s->iface);
1289 1290

	struct iovec iov = {s->tbuf, s->tpos - s->tbuf};
Ondřej Zajíček's avatar
Ondřej Zajíček committed
1291
	// byte cmsg_buf[CMSG_TX_SPACE];
1292 1293 1294 1295 1296

	struct msghdr msg = {
	  .msg_name = &sa,
	  .msg_namelen = sizeof(sa),
	  .msg_iov = &iov,
1297
	  .msg_iovlen = 1};
1298

Ondřej Zajíček's avatar
Ondřej Zajíček committed
1299
	// sysio_prepare_tx_cmsgs(s, &msg, cmsg_buf, sizeof(cmsg_buf));
1300 1301
	e = sendmsg(s->fd, &msg, 0);

1302 1303 1304 1305
	if (e < 0)
	  {
	    if (errno != EINTR && errno != EAGAIN)
	      {
1306
		reset_tx_buffer(s);
1307
		s->err_hook(s, errno);
1308 1309 1310 1311
		return -1;
	      }
	    return 0;
	  }
1312
	reset_tx_buffer(s);
1313 1314 1315
	return 1;
      }
    default:
1316
      bug("sk_maybe_write: unknown socket type %d", s->type);
1317 1318 1319
    }
}

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
int
sk_rx_ready(sock *s)
{
  fd_set rd, wr;
  struct timeval timo;
  int rv;

  FD_ZERO(&rd);
  FD_ZERO(&wr);
  FD_SET(s->fd, &rd);

  timo.tv_sec = 0;
  timo.tv_usec = 0;

 redo:
  rv = select(s->fd+1, &rd, &wr, NULL, &timo);
  
  if ((rv < 0) && (errno == EINTR || errno == EAGAIN))
    goto redo;

  return rv;
}

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
/**
 * sk_send - send data to a socket
 * @s: socket
 * @len: number of bytes to send
 *
 * This function sends @len bytes of data prepared in the
 * transmit buffer of the socket @s to the network connection.
 * If the packet can be sent immediately, it does so and returns
 * 1, else it queues the packet for later processing, returns 0
 * and calls the @tx_hook of the socket when the tranmission
 * takes place.
 */
1355 1356 1357 1358 1359 1360 1361 1362
int
sk_send(sock *s, unsigned len)
{
  s->ttx = s->tbuf;
  s->tpos = s->tbuf + len;
  return sk_maybe_write(s);
}

1363 1364 1365 1366 1367 1368 1369
/**
 * sk_send_to - send data to a specific destination
 * @s: socket
 * @len: number of bytes to send
 * @addr: IP address to send the packet to
 * @port: port to send the packet to
 *
1370
 * This is a sk_send() replacement for connection-less packet sockets
1371 1372
 * which allows destination of the packet to be chosen dynamically.
 */
1373 1374 1375
int
sk_send_to(sock *s, unsigned len, ip_addr addr, unsigned port)
{
1376 1377
  s->daddr = addr;
  s->dport = port;
1378 1379 1380 1381 1382
  s->ttx = s->tbuf;
  s->tpos = s->tbuf + len;
  return sk_maybe_write(s);
}

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
/*
int
sk_send_full(sock *s, unsigned len, struct iface *ifa,
	     ip_addr saddr, ip_addr daddr, unsigned dport)
{
  s->iface = ifa;
  s->saddr = saddr;
  s->daddr = daddr;
  s->dport = dport;
  s->ttx = s->tbuf;
  s->tpos = s->tbuf + len;
  return sk_maybe_write(s);
}
*/

1398 1399 1400 1401 1402 1403 1404
static int
sk_read(sock *s)
{
  switch (s->type)
    {
    case SK_TCP_PASSIVE:
      {
1405
	sockaddr sa;
1406 1407 1408 1409 1410 1411
	return sk_passive_connected(s, (struct sockaddr *) &sa, sizeof(sa), SK_TCP);
      }
    case SK_UNIX_PASSIVE:
      {
	struct sockaddr_un sa;
	return sk_passive_connected(s, (struct sockaddr *) &sa, sizeof(sa), SK_UNIX);
1412 1413
      }
    case SK_TCP:
1414
    case SK_UNIX:
1415 1416 1417 1418 1419 1420
      {
	int c = read(s->fd, s->rpos, s->rbuf + s->rbsize - s->rpos);

	if (c < 0)
	  {
	    if (errno != EINTR && errno != EAGAIN)
1421
	      s->err_hook(s, errno);
1422 1423
	  }
	else if (!c)
1424
	  s->err_hook(s, 0);
1425 1426 1427 1428
	else
	  {
	    s->rpos += c;
	    if (s->rx_hook(s, s->rpos - s->rbuf))
1429 1430 1431 1432 1433
	      {
		/* We need to be careful since the socket could have been deleted by the hook */
		if (current_sock == s)
		  s->rpos = s->rbuf;
	      }
1434 1435 1436 1437
	    return 1;
	  }
	return 0;
      }
1438 1439
    case SK_MAGIC:
      return s->rx_hook(s, 0);
1440 1441
    default:
      {
1442
	sockaddr sa;
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
	int e;

	struct iovec iov = {s->rbuf, s->rbsize};
	byte cmsg_buf[CMSG_RX_SPACE];

	struct msghdr msg = {
	  .msg_name = &sa,
	  .msg_namelen = sizeof(sa),
	  .msg_iov = &iov,
	  .msg_iovlen = 1,
	  .msg_control = cmsg_buf,
	  .msg_controllen = sizeof(cmsg_buf),
	  .msg_flags = 0};

	e = recvmsg(s->fd, &msg, 0);
1458 1459 1460 1461

	if (e < 0)
	  {
	    if (errno != EINTR && errno != EAGAIN)
1462
	      s->err_hook(s, errno);
1463 1464 1465
	    return 0;
	  }
	s->rpos = s->rbuf + e;
1466
	get_sockaddr(&sa, &s->faddr, &s->fport, 1);
1467 1468
	sysio_process_rx_cmsgs(s, &msg);

1469 1470 1471 1472 1473 1474
	s->rx_hook(s, e);
	return 1;
      }
    }
}

1475
static int
1476 1477
sk_write(sock *s)
{
1478 1479 1480 1481 1482 1483
  switch (s->type)
    {
    case SK_TCP_ACTIVE:
      {
	sockaddr sa;
	fill_in_sockaddr(&sa, s->daddr, s->dport);
Ondřej Filip's avatar
Ondřej Filip committed
1484
	if (connect(s->fd, (struct sockaddr *) &sa, sizeof(sa)) >= 0 || errno == EISCONN)
1485 1486
	  sk_tcp_connected(s);
	else if (errno != EINTR && errno != EAGAIN && errno != EINPROGRESS)
1487
	  s->err_hook(s, errno);
1488
	return 0;
1489 1490
      }
    default:
1491 1492 1493 1494 1495 1496
      if (s->ttx != s->tpos && sk_maybe_write(s) > 0)
	{
	  s->tx_hook(s);
	  return 1;
	}
      return 0;
1497
    }
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
}

void
sk_dump_all(void)
{
  node *n;
  sock *s;

  debug("Open sockets:\n");
  WALK_LIST(n, sock_list)
    {
      s = SKIP_BACK(sock, n, n);
      debug("%p ", s);
      sk_dump(&s->r);
    }
  debug("\n");
}

#undef ERR
1517
#undef WARN
1518 1519 1520 1521 1522

/*
 *	Main I/O Loop
 */

1523 1524 1525
volatile int async_config_flag;		/* Asynchronous reconfiguration/dump scheduled */
volatile int async_dump_flag;

1526 1527 1528 1529 1530 1531
void
io_init(void)
{
  init_list(&near_timers);
  init_list(&far_timers);
  init_list(&sock_list);
1532
  init_list(&global_event_list);
1533
  krt_io_init();
1534 1535 1536
  init_times();
  update_times();
  srandom((int) now_real);
1537 1538
}

1539 1540 1541
static int short_loops = 0;
#define SHORT_LOOP_MAX 10

1542 1543 1544 1545 1546 1547
void
io_loop(void)
{
  fd_set rd, wr;
  struct timeval timo;
  time_t tout;
1548
  int hi, events;
1549
  sock *s;
1550
  node *n;
1551

1552
  sock_recalc_fdsets_p = 1;
1553 1554
  for(;;)
    {
1555
      events = ev_run_list(&global_event_list);
1556
      update_times();
1557 1558 1559 1560 1561 1562
      tout = tm_first_shot();
      if (tout <= now)
	{
	  tm_shot();
	  continue;
	}
1563 1564
      timo.tv_sec = events ? 0 : tout - now;
      timo.tv_usec = 0;
1565

1566 1567 1568 1569 1570 1571 1572
      if (sock_recalc_fdsets_p)
	{
	  sock_recalc_fdsets_p = 0;
	  FD_ZERO(&rd);
	  FD_ZERO(&wr);
	}

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
      hi = 0;
      WALK_LIST(n, sock_list)
	{
	  s = SKIP_BACK(sock, n, n);
	  if (s->rx_hook)
	    {
	      FD_SET(s->fd, &rd);
	      if (s->fd > hi)
		hi = s->fd;
	    }
1583 1584
	  else
	    FD_CLR(s->fd, &rd);
1585 1586 1587 1588 1589 1590
	  if (s->tx_hook && s->ttx != s->tpos)
	    {
	      FD_SET(s->fd, &wr);
	      if (s->fd > hi)
		hi = s->fd;
	    }
1591 1592
	  else
	    FD_CLR(s->fd, &wr);
1593 1594
	}

1595 1596 1597 1598 1599 1600 1601 1602 1603
      /*
       * Yes, this is racy. But even if the signal comes before this test
       * and entering select(), it gets caught on the next timer tick.
       */

      if (async_config_flag)
	{
	  async_config();
	  async_config_flag = 0;
1604
	  continue;
1605 1606 1607 1608 1609
	}
      if (async_dump_flag)
	{
	  async_dump();
	  async_dump_flag = 0;
1610 1611 1612 1613 1614 1615 1616
	  continue;
	}
      if (async_shutdown_flag)
	{
	  async_shutdown();
	  async_shutdown_flag = 0;
	  continue;
1617 1618 1619
	}

      /* And finally enter select() to find active sockets */
1620
      hi = select(hi+1, &rd, &wr, NULL, &timo);
1621

1622 1623 1624 1625 1626 1627 1628 1629
      if (hi < 0)
	{
	  if (errno == EINTR || errno == EAGAIN)
	    continue;
	  die("select: %m");
	}
      if (hi)
	{
1630 1631 1632
	  /* guaranteed to be non-empty */
	  current_sock = SKIP_BACK(sock, n, HEAD(sock_list));

1633
	  while (current_sock)
1634
	    {
1635 1636
	      sock *s = current_sock;
	      int e;
1637 1638 1639 1640
	      int steps;

	      steps = MAX_STEPS;
	      if ((s->type >= SK_MAGIC) && FD_ISSET(s->fd, &rd) && s->rx_hook)
1641 1642
		do
		  {
1643
		    steps--;
1644 1645 1646 1647
		    e = sk_read(s);
		    if (s != current_sock)
		      goto next;
		  }
1648 1649 1650
		while (e && s->rx_hook && steps);

	      steps = MAX_STEPS;
1651 1652 1653
	      if (FD_ISSET(s->fd, &wr))
		do
		  {
1654
		    steps--;
1655 1656 1657 1658
		    e = sk_write(s);
		    if (s != current_sock)
		      goto next;
		  }
1659
		while (e && steps);
1660 1661
	      current_sock = sk_next(s);
	    next: ;
1662
	    }
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690

	  short_loops++;
	  if (events && (short_loops < SHORT_LOOP_MAX))
	    continue;
	  short_loops = 0;

	  int count = 0;
	  current_sock = stored_sock;
	  if (current_sock == NULL)
	    current_sock = SKIP_BACK(sock, n, HEAD(sock_list));

	  while (current_sock && count < MAX_RX_STEPS)
	    {
	      sock *s = current_sock;
	      int e;

	      if ((s->type < SK_MAGIC) && FD_ISSET(s->fd, &rd) && s->rx_hook)
		{
		  count++;
		  e = sk_read(s);
		  if (s != current_sock)
		      goto next2;
		}
	      current_sock = sk_next(s);
	    next2: ;
	    }

	  stored_sock = current_sock;
1691 1692 1693
	}
    }
}
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703

void
test_old_bird(char *path)
{
  int fd;
  struct sockaddr_un sa;

  fd = socket(AF_UNIX, SOCK_STREAM, 0);
  if (fd < 0)
    die("Cannot create socket: %m");
1704 1705
  if (strlen(path) >= sizeof(sa.sun_path))
    die("Socket path too long");
1706 1707 1708 1709 1710 1711 1712 1713 1714
  bzero(&sa, sizeof(sa));
  sa.sun_family = AF_UNIX;
  strcpy(sa.sun_path, path);
  if (connect(fd, (struct sockaddr *) &sa, SUN_LEN(&sa)) == 0)
    die("I found another BIRD running.");
  close(fd);
}