io.c 33.4 KB
Newer Older
1 2 3
/*
 *	BIRD Internet Routing Daemon -- Unix I/O
 *
4
 *	(c) 1998--2004 Martin Mares <mj@ucw.cz>
5
 *      (c) 2004       Ondrej Filip <feela@network.cz>
6 7 8 9
 *
 *	Can be freely distributed and used under the terms of the GNU GPL.
 */

10 11 12 13
/* Unfortunately, some glibc versions hide parts of RFC 3542 API
   if _GNU_SOURCE is not defined. */
#define _GNU_SOURCE 1

14 15
#include <stdio.h>
#include <stdlib.h>
16
#include <time.h>
17 18 19 20
#include <sys/time.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/fcntl.h>
21
#include <sys/uio.h>
22
#include <sys/un.h>
23 24 25 26 27 28 29 30
#include <unistd.h>
#include <errno.h>

#include "nest/bird.h"
#include "lib/lists.h"
#include "lib/resource.h"
#include "lib/timer.h"
#include "lib/socket.h"
31
#include "lib/event.h"
32
#include "lib/string.h"
33 34 35
#include "nest/iface.h"

#include "lib/unix.h"
36
#include "lib/sysio.h"
37

38
/* Maximum number of calls of tx handler for one socket in one
39 40 41 42 43
 * select iteration. Should be small enough to not monopolize CPU by
 * one protocol instance.
 */
#define MAX_STEPS 4

44 45 46 47 48
/* Maximum number of calls of rx handler for all sockets in one select
   iteration. RX callbacks are often much more costly so we limit
   this to gen small latencies */
#define MAX_RX_STEPS 4

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
/*
 *	Tracked Files
 */

struct rfile {
  resource r;
  FILE *f;
};

static void
rf_free(resource *r)
{
  struct rfile *a = (struct rfile *) r;

  fclose(a->f);
}

static void
rf_dump(resource *r)
{
  struct rfile *a = (struct rfile *) r;

  debug("(FILE *%p)\n", a->f);
}

static struct resclass rf_class = {
  "FILE",
  sizeof(struct rfile),
  rf_free,
78
  rf_dump,
79
  NULL,
80
  NULL
81 82 83
};

void *
84
tracked_fopen(pool *p, char *name, char *mode)
85 86 87 88 89 90 91 92 93 94 95
{
  FILE *f = fopen(name, mode);

  if (f)
    {
      struct rfile *r = ralloc(p, &rf_class);
      r->f = f;
    }
  return f;
}

96 97 98 99 100
/**
 * DOC: Timers
 *
 * Timers are resources which represent a wish of a module to call
 * a function at the specified time. The platform dependent code
Martin Mareš's avatar
Martin Mareš committed
101
 * doesn't guarantee exact timing, only that a timer function
102 103
 * won't be called before the requested time.
 *
104 105 106 107 108
 * In BIRD, time is represented by values of the &bird_clock_t type
 * which are integral numbers interpreted as a relative number of seconds since
 * some fixed time point in past. The current time can be read
 * from variable @now with reasonable accuracy and is monotonic. There is also
 * a current 'absolute' time in variable @now_real reported by OS.
109 110 111 112 113
 *
 * Each timer is described by a &timer structure containing a pointer
 * to the handler function (@hook), data private to this function (@data),
 * time the function should be called at (@expires, 0 for inactive timers),
 * for the other fields see |timer.h|.
114 115 116 117 118 119 120
 */

#define NEAR_TIMER_LIMIT 4

static list near_timers, far_timers;
static bird_clock_t first_far_timer = TIME_INFINITY;

121 122
/* now must be different from 0, because 0 is a special value in timer->expires */
bird_clock_t now = 1, now_real;
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

static void
update_times_plain(void)
{
  bird_clock_t new_time = time(NULL);
  int delta = new_time - now_real;

  if ((delta >= 0) && (delta < 60))
    now += delta;
  else if (now_real != 0)
   log(L_WARN "Time jump, delta %d s", delta);

  now_real = new_time;
}

static void
update_times_gettime(void)
{
  struct timespec ts;
  int rv;

  rv = clock_gettime(CLOCK_MONOTONIC, &ts);
  if (rv != 0)
    die("clock_gettime: %m");

  if (ts.tv_sec != now) {
    if (ts.tv_sec < now)
      log(L_ERR "Monotonic timer is broken");

    now = ts.tv_sec;
    now_real = time(NULL);
  }
}

static int clock_monotonic_available;

static inline void
update_times(void)
{
  if (clock_monotonic_available)
    update_times_gettime();
  else
    update_times_plain();
}

static inline void
init_times(void)
{
 struct timespec ts;
 clock_monotonic_available = (clock_gettime(CLOCK_MONOTONIC, &ts) == 0);
 if (!clock_monotonic_available)
   log(L_WARN "Monotonic timer is missing");
}

177 178 179 180 181 182 183 184 185 186 187 188 189 190

static void
tm_free(resource *r)
{
  timer *t = (timer *) r;

  tm_stop(t);
}

static void
tm_dump(resource *r)
{
  timer *t = (timer *) r;

191
  debug("(code %p, data %p, ", t->hook, t->data);
192 193 194 195
  if (t->randomize)
    debug("rand %d, ", t->randomize);
  if (t->recurrent)
    debug("recur %d, ", t->recurrent);
196 197 198 199 200 201 202 203 204 205
  if (t->expires)
    debug("expires in %d sec)\n", t->expires - now);
  else
    debug("inactive)\n");
}

static struct resclass tm_class = {
  "Timer",
  sizeof(timer),
  tm_free,
206
  tm_dump,
207
  NULL,
208
  NULL
209 210
};

211 212 213 214 215 216 217 218
/**
 * tm_new - create a timer
 * @p: pool
 *
 * This function creates a new timer resource and returns
 * a pointer to it. To use the timer, you need to fill in
 * the structure fields and call tm_start() to start timing.
 */
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
timer *
tm_new(pool *p)
{
  timer *t = ralloc(p, &tm_class);
  return t;
}

static inline void
tm_insert_near(timer *t)
{
  node *n = HEAD(near_timers);

  while (n->next && (SKIP_BACK(timer, n, n)->expires < t->expires))
    n = n->next;
  insert_node(&t->n, n->prev);
}

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
/**
 * tm_start - start a timer
 * @t: timer
 * @after: number of seconds the timer should be run after
 *
 * This function schedules the hook function of the timer to
 * be called after @after seconds. If the timer has been already
 * started, it's @expire time is replaced by the new value.
 *
 * You can have set the @randomize field of @t, the timeout
 * will be increased by a random number of seconds chosen
 * uniformly from range 0 .. @randomize.
 *
 * You can call tm_start() from the handler function of the timer
 * to request another run of the timer. Also, you can set the @recurrent
 * field to have the timer re-added automatically with the same timeout.
 */
253 254 255 256 257 258
void
tm_start(timer *t, unsigned after)
{
  bird_clock_t when;

  if (t->randomize)
259
    after += random() % (t->randomize + 1);
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
  when = now + after;
  if (t->expires == when)
    return;
  if (t->expires)
    rem_node(&t->n);
  t->expires = when;
  if (after <= NEAR_TIMER_LIMIT)
    tm_insert_near(t);
  else
    {
      if (!first_far_timer || first_far_timer > when)
	first_far_timer = when;
      add_tail(&far_timers, &t->n);
    }
}

276 277 278 279 280 281 282
/**
 * tm_stop - stop a timer
 * @t: timer
 *
 * This function stops a timer. If the timer is already stopped,
 * nothing happens.
 */
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
void
tm_stop(timer *t)
{
  if (t->expires)
    {
      rem_node(&t->n);
      t->expires = 0;
    }
}

static void
tm_dump_them(char *name, list *l)
{
  node *n;
  timer *t;

  debug("%s timers:\n", name);
  WALK_LIST(n, *l)
    {
      t = SKIP_BACK(timer, n, n);
      debug("%p ", t);
      tm_dump(&t->r);
    }
  debug("\n");
}

void
tm_dump_all(void)
{
  tm_dump_them("Near", &near_timers);
  tm_dump_them("Far", &far_timers);
}

static inline time_t
tm_first_shot(void)
{
  time_t x = first_far_timer;

  if (!EMPTY_LIST(near_timers))
    {
      timer *t = SKIP_BACK(timer, n, HEAD(near_timers));
      if (t->expires < x)
	x = t->expires;
    }
  return x;
}

static void
tm_shot(void)
{
  timer *t;
  node *n, *m;

  if (first_far_timer <= now)
    {
338
      bird_clock_t limit = now + NEAR_TIMER_LIMIT;
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
      first_far_timer = TIME_INFINITY;
      n = HEAD(far_timers);
      while (m = n->next)
	{
	  t = SKIP_BACK(timer, n, n);
	  if (t->expires <= limit)
	    {
	      rem_node(n);
	      tm_insert_near(t);
	    }
	  else if (t->expires < first_far_timer)
	    first_far_timer = t->expires;
	  n = m;
	}
    }
  while ((n = HEAD(near_timers)) -> next)
    {
356
      int delay;
357 358 359 360
      t = SKIP_BACK(timer, n, n);
      if (t->expires > now)
	break;
      rem_node(n);
361
      delay = t->expires - now;
362
      t->expires = 0;
363 364 365 366 367 368 369
      if (t->recurrent)
	{
	  int i = t->recurrent - delay;
	  if (i < 0)
	    i = 0;
	  tm_start(t, i);
	}
370 371 372 373
      t->hook(t);
    }
}

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
/**
 * tm_parse_datetime - parse a date and time
 * @x: datetime string
 *
 * tm_parse_datetime() takes a textual representation of
 * a date and time (dd-mm-yyyy hh:mm:ss)
 * and converts it to the corresponding value of type &bird_clock_t.
 */
bird_clock_t
tm_parse_datetime(char *x)
{
  struct tm tm;
  int n;
  time_t t;

  if (sscanf(x, "%d-%d-%d %d:%d:%d%n", &tm.tm_mday, &tm.tm_mon, &tm.tm_year, &tm.tm_hour, &tm.tm_min, &tm.tm_sec, &n) != 6 || x[n])
    return tm_parse_date(x);
  tm.tm_mon--;
  tm.tm_year -= 1900;
  t = mktime(&tm);
  if (t == (time_t) -1)
    return 0;
  return t;
}
398 399 400 401 402 403 404
/**
 * tm_parse_date - parse a date
 * @x: date string
 *
 * tm_parse_date() takes a textual representation of a date (dd-mm-yyyy)
 * and converts it to the corresponding value of type &bird_clock_t.
 */
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
bird_clock_t
tm_parse_date(char *x)
{
  struct tm tm;
  int n;
  time_t t;

  if (sscanf(x, "%d-%d-%d%n", &tm.tm_mday, &tm.tm_mon, &tm.tm_year, &n) != 3 || x[n])
    return 0;
  tm.tm_mon--;
  tm.tm_year -= 1900;
  tm.tm_hour = tm.tm_min = tm.tm_sec = 0;
  t = mktime(&tm);
  if (t == (time_t) -1)
    return 0;
  return t;
}

423 424
static void
tm_format_reltime(char *x, struct tm *tm, bird_clock_t delta)
425
{
426 427
  static char *month_names[12] = { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
				   "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
428

429 430 431 432 433 434
  if (delta < 20*3600)
    bsprintf(x, "%02d:%02d", tm->tm_hour, tm->tm_min);
  else if (delta < 360*86400)
    bsprintf(x, "%s%02d", month_names[tm->tm_mon], tm->tm_mday);
  else
    bsprintf(x, "%d", tm->tm_year+1900);
435 436
}

437 438
#include "conf/conf.h"

439 440 441 442 443
/**
 * tm_format_datetime - convert date and time to textual representation
 * @x: destination buffer of size %TM_DATETIME_BUFFER_SIZE
 * @t: time
 *
444 445
 * This function formats the given relative time value @t to a textual
 * date/time representation (dd-mm-yyyy hh:mm:ss) in real time.
446
 */
447
void
448
tm_format_datetime(char *x, struct timeformat *fmt_spec, bird_clock_t t)
449
{
450
  const char *fmt_used;
451
  struct tm *tm;
452 453
  bird_clock_t delta = now - t;
  t = now_real - delta;
454 455
  tm = localtime(&t);

456 457
  if (fmt_spec->fmt1 == NULL)
    return tm_format_reltime(x, tm, delta);
458

459 460
  if ((fmt_spec->limit == 0) || (delta < fmt_spec->limit))
    fmt_used = fmt_spec->fmt1;
461
  else
462 463 464 465 466
    fmt_used = fmt_spec->fmt2;

  int rv = strftime(x, TM_DATETIME_BUFFER_SIZE, fmt_used, tm);
  if (((rv == 0) && fmt_used[0]) || (rv == TM_DATETIME_BUFFER_SIZE))
    strcpy(x, "<too-long>");
467 468
}

469 470 471 472 473 474 475 476 477 478
/**
 * DOC: Sockets
 *
 * Socket resources represent network connections. Their data structure (&socket)
 * contains a lot of fields defining the exact type of the socket, the local and
 * remote addresses and ports, pointers to socket buffers and finally pointers to
 * hook functions to be called when new data have arrived to the receive buffer
 * (@rx_hook), when the contents of the transmit buffer have been transmitted
 * (@tx_hook) and when an error or connection close occurs (@err_hook).
 *
479
 * Freeing of sockets from inside socket hooks is perfectly safe.
480 481
 */

482 483 484 485
#ifndef SOL_IP
#define SOL_IP IPPROTO_IP
#endif

486 487 488 489
#ifndef SOL_IPV6
#define SOL_IPV6 IPPROTO_IPV6
#endif

490
static list sock_list;
491
static struct birdsock *current_sock;
492
static struct birdsock *stored_sock;
493 494 495 496 497 498 499 500 501 502
static int sock_recalc_fdsets_p;

static inline sock *
sk_next(sock *s)
{
  if (!s->n.next->next)
    return NULL;
  else
    return SKIP_BACK(sock, n, s->n.next);
}
503 504

static void
505
sk_alloc_bufs(sock *s)
506
{
507 508 509 510 511 512 513
  if (!s->rbuf && s->rbsize)
    s->rbuf = s->rbuf_alloc = xmalloc(s->rbsize);
  s->rpos = s->rbuf;
  if (!s->tbuf && s->tbsize)
    s->tbuf = s->tbuf_alloc = xmalloc(s->tbsize);
  s->tpos = s->ttx = s->tbuf;
}
514

515 516 517
static void
sk_free_bufs(sock *s)
{
518
  if (s->rbuf_alloc)
519 520 521 522
    {
      xfree(s->rbuf_alloc);
      s->rbuf = s->rbuf_alloc = NULL;
    }
523
  if (s->tbuf_alloc)
524 525 526 527 528 529 530 531 532 533 534 535
    {
      xfree(s->tbuf_alloc);
      s->tbuf = s->tbuf_alloc = NULL;
    }
}

static void
sk_free(resource *r)
{
  sock *s = (sock *) r;

  sk_free_bufs(s);
536
  if (s->fd >= 0)
537 538
    {
      close(s->fd);
539 540
      if (s == current_sock)
	current_sock = sk_next(s);
541 542
      if (s == stored_sock)
	stored_sock = sk_next(s);
543
      rem_node(&s->n);
544
      sock_recalc_fdsets_p = 1;
545
    }
546 547
}

548 549 550 551 552 553 554
void
sk_reallocate(sock *s)
{
  sk_free_bufs(s);
  sk_alloc_bufs(s);
}

555 556 557 558
static void
sk_dump(resource *r)
{
  sock *s = (sock *) r;
559
  static char *sk_type_names[] = { "TCP<", "TCP>", "TCP", "UDP", "UDP/MC", "IP", "IP/MC", "MAGIC", "UNIX<", "UNIX", "DEL!" };
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576

  debug("(%s, ud=%p, sa=%08x, sp=%d, da=%08x, dp=%d, tos=%d, ttl=%d, if=%s)\n",
	sk_type_names[s->type],
	s->data,
	s->saddr,
	s->sport,
	s->daddr,
	s->dport,
	s->tos,
	s->ttl,
	s->iface ? s->iface->name : "none");
}

static struct resclass sk_class = {
  "Socket",
  sizeof(sock),
  sk_free,
577
  sk_dump,
578
  NULL,
579
  NULL
580 581
};

582 583 584 585 586 587 588 589
/**
 * sk_new - create a socket
 * @p: pool
 *
 * This function creates a new socket resource. If you want to use it,
 * you need to fill in all the required fields of the structure and
 * call sk_open() to do the actual opening of the socket.
 */
590 591 592 593 594
sock *
sk_new(pool *p)
{
  sock *s = ralloc(p, &sk_class);
  s->pool = p;
595
  // s->saddr = s->daddr = IPA_NONE;
596 597 598 599 600
  s->tos = s->ttl = -1;
  s->fd = -1;
  return s;
}

601 602 603 604 605 606
static void
sk_insert(sock *s)
{
  add_tail(&sock_list, &s->n);
  sock_recalc_fdsets_p = 1;
}
607

608 609 610 611 612
#ifdef IPV6

void
fill_in_sockaddr(sockaddr *sa, ip_addr a, unsigned port)
{
613
  memset (sa, 0, sizeof (struct sockaddr_in6));
614 615 616
  sa->sin6_family = AF_INET6;
  sa->sin6_port = htons(port);
  sa->sin6_flowinfo = 0;
617 618 619
#ifdef HAVE_SIN_LEN
  sa->sin6_len = sizeof(struct sockaddr_in6);
#endif
620 621 622
  set_inaddr(&sa->sin6_addr, a);
}

623 624 625 626 627 628
static inline void
fill_in_sockifa(sockaddr *sa, struct iface *ifa)
{
  sa->sin6_scope_id = ifa ? ifa->index : 0;
}

629
void
630
get_sockaddr(struct sockaddr_in6 *sa, ip_addr *a, unsigned *port, int check)
631
{
632 633
  if (check && sa->sin6_family != AF_INET6)
    bug("get_sockaddr called for wrong address family (%d)", sa->sin6_family);
634 635 636 637 638 639 640 641
  if (port)
    *port = ntohs(sa->sin6_port);
  memcpy(a, &sa->sin6_addr, sizeof(*a));
  ipa_ntoh(*a);
}

#else

642
void
643
fill_in_sockaddr(sockaddr *sa, ip_addr a, unsigned port)
644
{
645
  memset (sa, 0, sizeof (struct sockaddr_in));
646 647
  sa->sin_family = AF_INET;
  sa->sin_port = htons(port);
648 649 650
#ifdef HAVE_SIN_LEN
  sa->sin_len = sizeof(struct sockaddr_in);
#endif
651 652 653
  set_inaddr(&sa->sin_addr, a);
}

654
static inline void
655
fill_in_sockifa(sockaddr *sa UNUSED, struct iface *ifa UNUSED)
656 657 658
{
}

659
void
660
get_sockaddr(struct sockaddr_in *sa, ip_addr *a, unsigned *port, int check)
661
{
662 663
  if (check && sa->sin_family != AF_INET)
    bug("get_sockaddr called for wrong address family (%d)", sa->sin_family);
664 665
  if (port)
    *port = ntohs(sa->sin_port);
666
  memcpy(a, &sa->sin_addr.s_addr, sizeof(*a));
667
  ipa_ntoh(*a);
668 669
}

670 671
#endif

672 673 674 675 676 677 678

#ifdef IPV6

/* PKTINFO handling is also standardized in IPv6 */
#define CMSG_RX_SPACE CMSG_SPACE(sizeof(struct in6_pktinfo))
#define CMSG_TX_SPACE CMSG_SPACE(sizeof(struct in6_pktinfo))

679 680 681 682 683 684 685 686 687 688
/*
 * RFC 2292 uses IPV6_PKTINFO for both the socket option and the cmsg
 * type, RFC 3542 changed the socket option to IPV6_RECVPKTINFO. If we
 * don't have IPV6_RECVPKTINFO we suppose the OS implements the older
 * RFC and we use IPV6_PKTINFO.
 */
#ifndef IPV6_RECVPKTINFO
#define IPV6_RECVPKTINFO IPV6_PKTINFO
#endif

689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
static char *
sysio_register_cmsgs(sock *s)
{
  int ok = 1;
  if ((s->flags & SKF_LADDR_RX) &&
      setsockopt(s->fd, IPPROTO_IPV6, IPV6_RECVPKTINFO, &ok, sizeof(ok)) < 0)
    return "IPV6_RECVPKTINFO";

  return NULL;
}

static void
sysio_process_rx_cmsgs(sock *s, struct msghdr *msg)
{
  struct cmsghdr *cm;
  struct in6_pktinfo *pi = NULL;

  if (!(s->flags & SKF_LADDR_RX))
    return;

  for (cm = CMSG_FIRSTHDR(msg); cm != NULL; cm = CMSG_NXTHDR(msg, cm))
    {
      if (cm->cmsg_level == IPPROTO_IPV6 && cm->cmsg_type == IPV6_PKTINFO)
	pi = (struct in6_pktinfo *) CMSG_DATA(cm);
    }

  if (!pi)
    {
      s->laddr = IPA_NONE;
      s->lifindex = 0;
      return;
    }

  get_inaddr(&s->laddr, &pi->ipi6_addr);
  s->lifindex = pi->ipi6_ifindex;
  return;
}

Ondřej Zajíček's avatar
Ondřej Zajíček committed
727
/*
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
static void
sysio_prepare_tx_cmsgs(sock *s, struct msghdr *msg, void *cbuf, size_t cbuflen)
{
  struct cmsghdr *cm;
  struct in6_pktinfo *pi;

  if (!(s->flags & SKF_LADDR_TX))
    return;

  msg->msg_control = cbuf;
  msg->msg_controllen = cbuflen;

  cm = CMSG_FIRSTHDR(msg);
  cm->cmsg_level = IPPROTO_IPV6;
  cm->cmsg_type = IPV6_PKTINFO;
  cm->cmsg_len = CMSG_LEN(sizeof(*pi));

  pi = (struct in6_pktinfo *) CMSG_DATA(cm);
  set_inaddr(&pi->ipi6_addr, s->saddr);
  pi->ipi6_ifindex = s->iface ? s->iface->index : 0;

  msg->msg_controllen = cm->cmsg_len;
  return;
}
Ondřej Zajíček's avatar
Ondřej Zajíček committed
752
*/
753 754
#endif

755 756 757 758
static char *
sk_set_ttl_int(sock *s)
{
#ifdef IPV6
759
  if (setsockopt(s->fd, SOL_IPV6, IPV6_UNICAST_HOPS, &s->ttl, sizeof(s->ttl)) < 0)
760 761 762 763 764
    return "IPV6_UNICAST_HOPS";
#else
  if (setsockopt(s->fd, SOL_IP, IP_TTL, &s->ttl, sizeof(s->ttl)) < 0)
    return "IP_TTL";
#ifdef CONFIG_UNIX_DONTROUTE
765
  int one = 1;
766 767 768 769 770 771 772
  if (s->ttl == 1 && setsockopt(s->fd, SOL_SOCKET, SO_DONTROUTE, &one, sizeof(one)) < 0)
    return "SO_DONTROUTE";
#endif 
#endif
  return NULL;
}

773 774 775
#define ERR(x) do { err = x; goto bad; } while(0)
#define WARN(x) log(L_WARN "sk_setup: %s: %m", x)

776 777 778 779
static char *
sk_setup(sock *s)
{
  int fd = s->fd;
780
  char *err = NULL;
781 782 783

  if (fcntl(fd, F_SETFL, O_NONBLOCK) < 0)
    ERR("fcntl(O_NONBLOCK)");
784 785
  if (s->type == SK_UNIX)
    return NULL;
786
#ifndef IPV6
787
  if ((s->tos >= 0) && setsockopt(fd, SOL_IP, IP_TOS, &s->tos, sizeof(s->tos)) < 0)
788
    WARN("IP_TOS");
789
#endif
790 791 792 793 794 795 796

#ifdef IPV6
  int v = 1;
  if ((s->flags & SKF_V6ONLY) && setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, &v, sizeof(v)) < 0)
    WARN("IPV6_V6ONLY");
#endif

797 798 799
  if (s->ttl >= 0)
    err = sk_set_ttl_int(s);

800
  sysio_register_cmsgs(s);
801 802 803 804
bad:
  return err;
}

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
/**
 * sk_set_ttl - set TTL for given socket.
 * @s: socket
 * @ttl: TTL value
 *
 * Set TTL for already opened connections when TTL was not set before.
 * Useful for accepted connections when different ones should have 
 * different TTL.
 *
 * Result: 0 for success, -1 for an error.
 */

int
sk_set_ttl(sock *s, int ttl)
{
  char *err;

  s->ttl = ttl;
  if (err = sk_set_ttl_int(s))
    log(L_ERR "sk_set_ttl: %s: %m", err);

  return (err ? -1 : 0);
}

829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855

/**
 * sk_set_md5_auth - add / remove MD5 security association for given socket.
 * @s: socket
 * @a: IP address of the other side
 * @passwd: password used for MD5 authentication
 *
 * In TCP MD5 handling code in kernel, there is a set of pairs
 * (address, password) used to choose password according to
 * address of the other side. This function is useful for
 * listening socket, for active sockets it is enough to set
 * s->password field.
 *
 * When called with passwd != NULL, the new pair is added,
 * When called with passwd == NULL, the existing pair is removed.
 *
 * Result: 0 for success, -1 for an error.
 */

int
sk_set_md5_auth(sock *s, ip_addr a, char *passwd)
{
  sockaddr sa;
  fill_in_sockaddr(&sa, a, 0);
  return sk_set_md5_auth_int(s, &sa, passwd);
}

856 857 858 859
int
sk_set_broadcast(sock *s, int enable)
{
  if (setsockopt(s->fd, SOL_SOCKET, SO_BROADCAST, &enable, sizeof(enable)) < 0)
860 861 862 863 864 865
    {
      log(L_ERR "sk_set_broadcast: SO_BROADCAST: %m");
      return -1;
    }

  return 0;
866 867 868 869 870
}


#ifdef IPV6

871 872 873 874 875 876 877 878 879 880 881 882
int
sk_set_ipv6_checksum(sock *s, int offset)
{
  if (setsockopt(s->fd, IPPROTO_IPV6, IPV6_CHECKSUM, &offset, sizeof(offset)) < 0)
    {
      log(L_ERR "sk_set_ipv6_checksum: IPV6_CHECKSUM: %m");
      return -1;
    }

  return 0;
}

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
int
sk_setup_multicast(sock *s)
{
  char *err;
  int zero = 0;
  int index;

  ASSERT(s->iface && s->iface->addr);

  index = s->iface->index;
  if (setsockopt(s->fd, SOL_IPV6, IPV6_MULTICAST_HOPS, &s->ttl, sizeof(s->ttl)) < 0)
    ERR("IPV6_MULTICAST_HOPS");
  if (setsockopt(s->fd, SOL_IPV6, IPV6_MULTICAST_LOOP, &zero, sizeof(zero)) < 0)
    ERR("IPV6_MULTICAST_LOOP");
  if (setsockopt(s->fd, SOL_IPV6, IPV6_MULTICAST_IF, &index, sizeof(index)) < 0)
    ERR("IPV6_MULTICAST_IF");

900 901 902
  if (err = sysio_bind_to_iface(s))
    goto bad;

903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
  return 0;

bad:
  log(L_ERR "sk_setup_multicast: %s: %m", err);
  return -1;
}

int
sk_join_group(sock *s, ip_addr maddr)
{
  struct ipv6_mreq mreq;
	
  set_inaddr(&mreq.ipv6mr_multiaddr, maddr);

#ifdef CONFIG_IPV6_GLIBC_20
  mreq.ipv6mr_ifindex = s->iface->index;
#else
  mreq.ipv6mr_interface = s->iface->index;
#endif

923
  if (setsockopt(s->fd, SOL_IPV6, IPV6_JOIN_GROUP, &mreq, sizeof(mreq)) < 0)
924
    {
925
      log(L_ERR "sk_join_group: IPV6_JOIN_GROUP: %m");
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
      return -1;
    }

  return 0;
}

int
sk_leave_group(sock *s, ip_addr maddr)
{
  struct ipv6_mreq mreq;
	
  set_inaddr(&mreq.ipv6mr_multiaddr, maddr);

#ifdef CONFIG_IPV6_GLIBC_20
  mreq.ipv6mr_ifindex = s->iface->index;
#else
  mreq.ipv6mr_interface = s->iface->index;
#endif

945
  if (setsockopt(s->fd, SOL_IPV6, IPV6_LEAVE_GROUP, &mreq, sizeof(mreq)) < 0)
946
    {
947
      log(L_ERR "sk_leave_group: IPV6_LEAVE_GROUP: %m");
948 949 950 951 952 953
      return -1;
    }

  return 0;
}

954

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
#else /* IPV4 */

int
sk_setup_multicast(sock *s)
{
  char *err;

  ASSERT(s->iface && s->iface->addr);

  if (err = sysio_setup_multicast(s))
    {
      log(L_ERR "sk_setup_multicast: %s: %m", err);
      return -1;
    }

  return 0;
}

int
sk_join_group(sock *s, ip_addr maddr)
{
 char *err;

 if (err = sysio_join_group(s, maddr))
    {
      log(L_ERR "sk_join_group: %s: %m", err);
      return -1;
    }

  return 0;
}

int
sk_leave_group(sock *s, ip_addr maddr)
{
 char *err;

 if (err = sysio_leave_group(s, maddr))
    {
      log(L_ERR "sk_leave_group: %s: %m", err);
      return -1;
    }

  return 0;
}

#endif 

1003

1004
static void
1005 1006
sk_tcp_connected(sock *s)
{
1007 1008 1009 1010 1011
  sockaddr lsa;
  int lsa_len = sizeof(lsa);
  if (getsockname(s->fd, (struct sockaddr *) &lsa, &lsa_len) == 0)
    get_sockaddr(&lsa, &s->saddr, &s->sport, 1);

1012 1013
  s->type = SK_TCP;
  sk_alloc_bufs(s);
1014
  s->tx_hook(s);
1015 1016
}

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
static int
sk_passive_connected(sock *s, struct sockaddr *sa, int al, int type)
{
  int fd = accept(s->fd, sa, &al);
  if (fd >= 0)
    {
      sock *t = sk_new(s->pool);
      char *err;
      t->type = type;
      t->fd = fd;
1027 1028 1029 1030 1031
      t->ttl = s->ttl;
      t->tos = s->tos;
      t->rbsize = s->rbsize;
      t->tbsize = s->tbsize;
      if (type == SK_TCP)
1032 1033 1034 1035 1036 1037 1038 1039
	{
	  sockaddr lsa;
	  int lsa_len = sizeof(lsa);
	  if (getsockname(fd, (struct sockaddr *) &lsa, &lsa_len) == 0)
	    get_sockaddr(&lsa, &t->saddr, &t->sport, 1);

	  get_sockaddr((sockaddr *) sa, &t->daddr, &t->dport, 1);
	}
1040
      sk_insert(t);
1041 1042 1043
      if (err = sk_setup(t))
	{
	  log(L_ERR "Incoming connection: %s: %m", err);
1044 1045
	  rfree(t);
	  return 1;
1046 1047
	}
      sk_alloc_bufs(t);
1048
      s->rx_hook(t, 0);
1049 1050 1051 1052
      return 1;
    }
  else if (errno != EINTR && errno != EAGAIN)
    {
1053
      s->err_hook(s, errno);
1054 1055 1056 1057
    }
  return 0;
}

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
/**
 * sk_open - open a socket
 * @s: socket
 *
 * This function takes a socket resource created by sk_new() and
 * initialized by the user and binds a corresponding network connection
 * to it.
 *
 * Result: 0 for success, -1 for an error.
 */
1068 1069 1070
int
sk_open(sock *s)
{
1071
  int fd;
1072
  sockaddr sa;
1073 1074 1075 1076 1077 1078 1079 1080
  int one = 1;
  int type = s->type;
  int has_src = ipa_nonzero(s->saddr) || s->sport;
  char *err;

  switch (type)
    {
    case SK_TCP_ACTIVE:
1081 1082
      s->ttx = "";			/* Force s->ttx != s->tpos */
      /* Fall thru */
1083
    case SK_TCP_PASSIVE:
1084
      fd = socket(BIRD_PF, SOCK_STREAM, IPPROTO_TCP);
1085 1086
      break;
    case SK_UDP:
1087
      fd = socket(BIRD_PF, SOCK_DGRAM, IPPROTO_UDP);
1088 1089
      break;
    case SK_IP:
1090
      fd = socket(BIRD_PF, SOCK_RAW, s->dport);
1091
      break;
1092 1093 1094
    case SK_MAGIC:
      fd = s->fd;
      break;
1095
    default:
1096
      bug("sk_open() called for invalid sock type %d", type);
1097 1098 1099 1100 1101 1102 1103
    }
  if (fd < 0)
    die("sk_open: socket: %m");
  s->fd = fd;

  if (err = sk_setup(s))
    goto bad;
1104

1105 1106 1107 1108
  if (has_src)
    {
      int port;

1109
      if (type == SK_IP)
1110 1111 1112 1113 1114 1115 1116 1117
	port = 0;
      else
	{
	  port = s->sport;
	  if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)) < 0)
	    ERR("SO_REUSEADDR");
	}
      fill_in_sockaddr(&sa, s->saddr, port);
1118
      fill_in_sockifa(&sa, s->iface);
1119 1120 1121 1122
      if (bind(fd, (struct sockaddr *) &sa, sizeof(sa)) < 0)
	ERR("bind");
    }
  fill_in_sockaddr(&sa, s->daddr, s->dport);
1123 1124 1125 1126 1127 1128 1129 1130

  if (s->password)
    {
      int rv = sk_set_md5_auth_int(s, &sa, s->password);
      if (rv < 0)
	goto bad_no_log;
    }

1131 1132 1133 1134 1135
  switch (type)
    {
    case SK_TCP_ACTIVE:
      if (connect(fd, (struct sockaddr *) &sa, sizeof(sa)) >= 0)
	sk_tcp_connected(s);
1136 1137
      else if (errno != EINTR && errno != EAGAIN && errno != EINPROGRESS &&
	       errno != ECONNREFUSED && errno != EHOSTUNREACH)
1138 1139 1140 1141 1142 1143
	ERR("connect");
      break;
    case SK_TCP_PASSIVE:
      if (listen(fd, 8))
	ERR("listen");
      break;
1144 1145 1146
    case SK_MAGIC:
      break;
    default:
1147
      sk_alloc_bufs(s);
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
#ifdef IPV6
#ifdef IPV6_MTU_DISCOVER
      {
	int dont = IPV6_PMTUDISC_DONT;
	if (setsockopt(fd, SOL_IPV6, IPV6_MTU_DISCOVER, &dont, sizeof(dont)) < 0)
	  ERR("IPV6_MTU_DISCOVER");
      }
#endif
#else
#ifdef IP_PMTUDISC
      {
	int dont = IP_PMTUDISC_DONT;
	if (setsockopt(fd, SOL_IP, IP_PMTUDISC, &dont, sizeof(dont)) < 0)
	  ERR("IP_PMTUDISC");
      }
#endif
#endif
1165 1166
    }

1167
  sk_insert(s);
1168 1169 1170 1171
  return 0;

bad:
  log(L_ERR "sk_open: %s: %m", err);
1172
bad_no_log:
1173 1174 1175 1176 1177
  close(fd);
  s->fd = -1;
  return -1;
}

1178
void
1179 1180 1181 1182 1183 1184 1185 1186
sk_open_unix(sock *s, char *name)
{
  int fd;
  struct sockaddr_un sa;
  char *err;

  fd = socket(AF_UNIX, SOCK_STREAM, 0);
  if (fd < 0)
1187
    ERR("socket");
1188 1189 1190 1191
  s->fd = fd;
  if (err = sk_setup(s))
    goto bad;
  unlink(name);
1192

1193
  /* Path length checked in test_old_bird() */
1194
  sa.sun_family = AF_UNIX;
1195
  strcpy(sa.sun_path, name);
1196
  if (bind(fd, (struct sockaddr *) &sa, SUN_LEN(&sa)) < 0)
1197 1198 1199
    ERR("bind");
  if (listen(fd, 8))
    ERR("listen");
1200
  sk_insert(s);
1201
  return;
1202

1203
 bad:
1204
  log(L_ERR "sk_open_unix: %s: %m", err);
1205
  die("Unable to create control socket %s", name);
1206 1207
}

1208 1209
static inline void reset_tx_buffer(sock *s) { s->ttx = s->tpos = s->tbuf; }

1210 1211 1212 1213 1214 1215 1216 1217
static int
sk_maybe_write(sock *s)
{
  int e;

  switch (s->type)
    {
    case SK_TCP:
1218
    case SK_MAGIC:
1219
    case SK_UNIX:
1220 1221 1222 1223 1224 1225 1226
      while (s->ttx != s->tpos)
	{
	  e = write(s->fd, s->ttx, s->tpos - s->ttx);
	  if (e < 0)
	    {
	      if (errno != EINTR && errno != EAGAIN)
		{
1227
		  reset_tx_buffer(s);
1228 1229
		  /* EPIPE is just a connection close notification during TX */
		  s->err_hook(s, (errno != EPIPE) ? errno : 0);
1230 1231 1232 1233 1234 1235
		  return -1;
		}
	      return 0;
	    }
	  s->ttx += e;
	}
1236
      reset_tx_buffer(s);
1237 1238 1239 1240 1241 1242
      return 1;
    case SK_UDP:
    case SK_IP:
      {
	if (s->tbuf == s->tpos)
	  return 1;
1243

1244 1245
	sockaddr sa;
	fill_in_sockaddr(&sa, s->daddr, s->dport);
1246
	fill_in_sockifa(&sa, s->iface);
1247 1248

	struct iovec iov = {s->tbuf, s->tpos - s->tbuf};
Ondřej Zajíček's avatar
Ondřej Zajíček committed
1249
	// byte cmsg_buf[CMSG_TX_SPACE];
1250 1251 1252 1253 1254

	struct msghdr msg = {
	  .msg_name = &sa,
	  .msg_namelen = sizeof(sa),
	  .msg_iov = &iov,
1255
	  .msg_iovlen = 1};
1256

Ondřej Zajíček's avatar
Ondřej Zajíček committed
1257
	// sysio_prepare_tx_cmsgs(s, &msg, cmsg_buf, sizeof(cmsg_buf));
1258 1259
	e = sendmsg(s->fd, &msg, 0);

1260 1261 1262 1263
	if (e < 0)
	  {
	    if (errno != EINTR && errno != EAGAIN)
	      {
1264
		reset_tx_buffer(s);
1265
		s->err_hook(s, errno);
1266 1267 1268 1269
		return -1;
	      }
	    return 0;
	  }
1270
	reset_tx_buffer(s);
1271 1272 1273
	return 1;
      }
    default:
1274
      bug("sk_maybe_write: unknown socket type %d", s->type);
1275 1276 1277
    }
}

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
int
sk_rx_ready(sock *s)
{
  fd_set rd, wr;
  struct timeval timo;
  int rv;

  FD_ZERO(&rd);
  FD_ZERO(&wr);
  FD_SET(s->fd, &rd);

  timo.tv_sec = 0;
  timo.tv_usec = 0;

 redo:
  rv = select(s->fd+1, &rd, &wr, NULL, &timo);
  
  if ((rv < 0) && (errno == EINTR || errno == EAGAIN))
    goto redo;

  return rv;
}

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
/**
 * sk_send - send data to a socket
 * @s: socket
 * @len: number of bytes to send
 *
 * This function sends @len bytes of data prepared in the
 * transmit buffer of the socket @s to the network connection.
 * If the packet can be sent immediately, it does so and returns
 * 1, else it queues the packet for later processing, returns 0
 * and calls the @tx_hook of the socket when the tranmission
 * takes place.
 */
1313 1314 1315 1316 1317 1318 1319 1320
int
sk_send(sock *s, unsigned len)
{
  s->ttx = s->tbuf;
  s->tpos = s->tbuf + len;
  return sk_maybe_write(s);
}

1321 1322 1323 1324 1325 1326 1327
/**
 * sk_send_to - send data to a specific destination
 * @s: socket
 * @len: number of bytes to send
 * @addr: IP address to send the packet to
 * @port: port to send the packet to
 *
1328
 * This is a sk_send() replacement for connection-less packet sockets
1329 1330
 * which allows destination of the packet to be chosen dynamically.
 */
1331 1332 1333
int
sk_send_to(sock *s, unsigned len, ip_addr addr, unsigned port)
{
1334 1335
  s->daddr = addr;
  s->dport = port;
1336 1337 1338 1339 1340
  s->ttx = s->tbuf;
  s->tpos = s->tbuf + len;
  return sk_maybe_write(s);
}

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
/*
int
sk_send_full(sock *s, unsigned len, struct iface *ifa,
	     ip_addr saddr, ip_addr daddr, unsigned dport)
{
  s->iface = ifa;
  s->saddr = saddr;
  s->daddr = daddr;
  s->dport = dport;
  s->ttx = s->tbuf;
  s->tpos = s->tbuf + len;
  return sk_maybe_write(s);
}
*/

1356 1357 1358 1359 1360 1361 1362
static int
sk_read(sock *s)
{
  switch (s->type)
    {
    case SK_TCP_PASSIVE:
      {
1363
	sockaddr sa;
1364 1365 1366 1367 1368 1369
	return sk_passive_connected(s, (struct sockaddr *) &sa, sizeof(sa), SK_TCP);
      }
    case SK_UNIX_PASSIVE:
      {
	struct sockaddr_un sa;
	return sk_passive_connected(s, (struct sockaddr *) &sa, sizeof(sa), SK_UNIX);
1370 1371
      }
    case SK_TCP:
1372
    case SK_UNIX:
1373 1374 1375 1376 1377 1378
      {
	int c = read(s->fd, s->rpos, s->rbuf + s->rbsize - s->rpos);

	if (c < 0)
	  {
	    if (errno != EINTR && errno != EAGAIN)
1379
	      s->err_hook(s, errno);
1380 1381
	  }
	else if (!c)
1382
	  s->err_hook(s, 0);
1383 1384 1385 1386
	else
	  {
	    s->rpos += c;
	    if (s->rx_hook(s, s->rpos - s->rbuf))
1387 1388 1389 1390 1391
	      {
		/* We need to be careful since the socket could have been deleted by the hook */
		if (current_sock == s)
		  s->rpos = s->rbuf;
	      }
1392 1393 1394 1395
	    return 1;
	  }
	return 0;
      }
1396 1397
    case SK_MAGIC:
      return s->rx_hook(s, 0);
1398 1399
    default:
      {
1400
	sockaddr sa;
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
	int e;

	struct iovec iov = {s->rbuf, s->rbsize};
	byte cmsg_buf[CMSG_RX_SPACE];

	struct msghdr msg = {
	  .msg_name = &sa,
	  .msg_namelen = sizeof(sa),
	  .msg_iov = &iov,
	  .msg_iovlen = 1,
	  .msg_control = cmsg_buf,
	  .msg_controllen = sizeof(cmsg_buf),
	  .msg_flags = 0};

	e = recvmsg(s->fd, &msg, 0);
1416 1417 1418 1419

	if (e < 0)
	  {
	    if (errno != EINTR && errno != EAGAIN)
1420
	      s->err_hook(s, errno);
1421 1422 1423
	    return 0;
	  }
	s->rpos = s->rbuf + e;
1424
	get_sockaddr(&sa, &s->faddr, &s->fport, 1);
1425 1426
	sysio_process_rx_cmsgs(s, &msg);

1427 1428 1429 1430 1431 1432
	s->rx_hook(s, e);
	return 1;
      }
    }
}

1433
static int
1434 1435
sk_write(sock *s)
{
1436 1437 1438 1439 1440 1441
  switch (s->type)
    {
    case SK_TCP_ACTIVE:
      {
	sockaddr sa;
	fill_in_sockaddr(&sa, s->daddr, s->dport);
Ondřej Filip's avatar
Ondřej Filip committed
1442
	if (connect(s->fd, (struct sockaddr *) &sa, sizeof(sa)) >= 0 || errno == EISCONN)
1443 1444
	  sk_tcp_connected(s);
	else if (errno != EINTR && errno != EAGAIN && errno != EINPROGRESS)
1445
	  s->err_hook(s, errno);
1446
	return 0;
1447 1448
      }
    default:
1449 1450 1451 1452 1453 1454
      if (s->ttx != s->tpos && sk_maybe_write(s) > 0)
	{
	  s->tx_hook(s);
	  return 1;
	}
      return 0;
1455
    }
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
}

void
sk_dump_all(void)
{
  node *n;
  sock *s;

  debug("Open sockets:\n");
  WALK_LIST(n, sock_list)
    {
      s = SKIP_BACK(sock, n, n);
      debug("%p ", s);
      sk_dump(&s->r);
    }
  debug("\n");
}

#undef ERR
1475
#undef WARN
1476 1477 1478 1479 1480

/*
 *	Main I/O Loop
 */

1481 1482 1483
volatile int async_config_flag;		/* Asynchronous reconfiguration/dump scheduled */
volatile int async_dump_flag;

1484 1485 1486 1487 1488 1489
void
io_init(void)
{
  init_list(&near_timers);
  init_list(&far_timers);
  init_list(&sock_list);
1490
  init_list(&global_event_list);
1491
  krt_io_init();
1492 1493 1494
  init_times();
  update_times();
  srandom((int) now_real);
1495 1496
}

1497 1498 1499
static int short_loops = 0;
#define SHORT_LOOP_MAX 10

1500 1501 1502 1503 1504 1505
void
io_loop(void)
{
  fd_set rd, wr;
  struct timeval timo;
  time_t tout;
1506
  int hi, events;
1507
  sock *s;
1508
  node *n;
1509

1510
  sock_recalc_fdsets_p = 1;
1511 1512
  for(;;)
    {
1513
      events = ev_run_list(&global_event_list);
1514
      update_times();
1515 1516 1517 1518 1519 1520
      tout = tm_first_shot();
      if (tout <= now)
	{
	  tm_shot();
	  continue;
	}
1521 1522
      timo.tv_sec = events ? 0 : tout - now;
      timo.tv_usec = 0;
1523

1524 1525 1526 1527 1528 1529 1530
      if (sock_recalc_fdsets_p)
	{
	  sock_recalc_fdsets_p = 0;
	  FD_ZERO(&rd);
	  FD_ZERO(&wr);
	}

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
      hi = 0;
      WALK_LIST(n, sock_list)
	{
	  s = SKIP_BACK(sock, n, n);
	  if (s->rx_hook)
	    {
	      FD_SET(s->fd, &rd);
	      if (s->fd > hi)
		hi = s->fd;
	    }
1541 1542
	  else
	    FD_CLR(s->fd, &rd);
1543 1544 1545 1546 1547 1548
	  if (s->tx_hook && s->ttx != s->tpos)
	    {
	      FD_SET(s->fd, &wr);
	      if (s->fd > hi)
		hi = s->fd;
	    }
1549 1550
	  else
	    FD_CLR(s->fd, &wr);
1551 1552
	}

1553 1554 1555 1556 1557 1558 1559 1560 1561
      /*
       * Yes, this is racy. But even if the signal comes before this test
       * and entering select(), it gets caught on the next timer tick.
       */

      if (async_config_flag)
	{
	  async_config();
	  async_config_flag = 0;
1562
	  continue;
1563 1564 1565 1566 1567
	}
      if (async_dump_flag)
	{
	  async_dump();
	  async_dump_flag = 0;
1568 1569 1570 1571 1572 1573 1574
	  continue;
	}
      if (async_shutdown_flag)
	{
	  async_shutdown();
	  async_shutdown_flag = 0;
	  continue;
1575 1576 1577
	}

      /* And finally enter select() to find active sockets */
1578
      hi = select(hi+1, &rd, &wr, NULL, &timo);
1579

1580 1581 1582 1583 1584 1585 1586 1587
      if (hi < 0)
	{
	  if (errno == EINTR || errno == EAGAIN)
	    continue;
	  die("select: %m");
	}
      if (hi)
	{
1588 1589 1590
	  /* guaranteed to be non-empty */
	  current_sock = SKIP_BACK(sock, n, HEAD(sock_list));

1591
	  while (current_sock)
1592
	    {
1593 1594
	      sock *s = current_sock;
	      int e;
1595 1596 1597 1598
	      int steps;

	      steps = MAX_STEPS;
	      if ((s->type >= SK_MAGIC) && FD_ISSET(s->fd, &rd) && s->rx_hook)
1599 1600
		do
		  {
1601
		    steps--;
1602 1603 1604 1605
		    e = sk_read(s);
		    if (s != current_sock)
		      goto next;
		  }
1606 1607 1608
		while (e && s->rx_hook && steps);

	      steps = MAX_STEPS;
1609 1610 1611
	      if (FD_ISSET(s->fd, &wr))
		do
		  {
1612
		    steps--;
1613 1614 1615 1616
		    e = sk_write(s);
		    if (s != current_sock)
		      goto next;
		  }
1617
		while (e && steps);
1618 1619
	      current_sock = sk_next(s);
	    next: ;
1620
	    }
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648

	  short_loops++;
	  if (events && (short_loops < SHORT_LOOP_MAX))
	    continue;
	  short_loops = 0;

	  int count = 0;
	  current_sock = stored_sock;
	  if (current_sock == NULL)
	    current_sock = SKIP_BACK(sock, n, HEAD(sock_list));

	  while (current_sock && count < MAX_RX_STEPS)
	    {
	      sock *s = current_sock;
	      int e;

	      if ((s->type < SK_MAGIC) && FD_ISSET(s->fd, &rd) && s->rx_hook)
		{
		  count++;
		  e = sk_read(s);
		  if (s != current_sock)
		      goto next2;
		}
	      current_sock = sk_next(s);
	    next2: ;
	    }

	  stored_sock = current_sock;
1649 1650 1651
	}
    }
}
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661

void
test_old_bird(char *path)
{
  int fd;
  struct sockaddr_un sa;

  fd = socket(AF_UNIX, SOCK_STREAM, 0);
  if (fd < 0)
    die("Cannot create socket: %m");
1662 1663
  if (strlen(path) >= sizeof(sa.sun_path))
    die("Socket path too long");
1664 1665 1666 1667 1668 1669 1670 1671 1672
  bzero(&sa, sizeof(sa));
  sa.sun_family = AF_UNIX;
  strcpy(sa.sun_path, path);
  if (connect(fd, (struct sockaddr *) &sa, SUN_LEN(&sa)) == 0)
    die("I found another BIRD running.");
  close(fd);
}