proto.c 43.5 KB
Newer Older
1 2 3
/*
 *	BIRD -- Protocols
 *
4
 *	(c) 1998--2000 Martin Mares <mj@ucw.cz>
5 6 7 8
 *
 *	Can be freely distributed and used under the terms of the GNU GPL.
 */

9
#undef LOCAL_DEBUG
10

11 12 13 14
#include "nest/bird.h"
#include "nest/protocol.h"
#include "lib/resource.h"
#include "lib/lists.h"
15
#include "lib/event.h"
16
#include "lib/string.h"
17
#include "conf/conf.h"
18 19
#include "nest/route.h"
#include "nest/iface.h"
20
#include "nest/cli.h"
21
#include "filter/filter.h"
22

23
pool *proto_pool;
24

25
static list protocol_list;
26
static list proto_list;
27

28 29
#define PD(pr, msg, args...) do { if (pr->debug & D_STATES) { log(L_TRACE "%s: " msg, pr->name , ## args); } } while(0)

30
list active_proto_list;
31 32
static list inactive_proto_list;
static list initial_proto_list;
33
static list flush_proto_list;
34
static struct proto *initial_device_proto;
35 36

static event *proto_flush_event;
37
static timer *proto_shutdown_timer;
38 39 40 41 42 43 44 45 46
static timer *gr_wait_timer;

#define GRS_NONE	0
#define GRS_INIT	1
#define GRS_ACTIVE	2
#define GRS_DONE	3

static int graceful_restart_state;
static u32 graceful_restart_locks;
47 48

static char *p_states[] = { "DOWN", "START", "UP", "STOP" };
49
static char *c_states[] = { "HUNGRY", "???", "HAPPY", "FLUSHING" };
50

51
static void proto_flush_loop(void *);
52
static void proto_shutdown_loop(struct timer *);
53
static void proto_rethink_goal(struct proto *p);
54 55
static void proto_want_export_up(struct proto *p);
static void proto_fell_down(struct proto *p);
56
static char *proto_state_name(struct proto *p);
57

58 59 60
static void
proto_enqueue(list *l, struct proto *p)
{
61
  add_tail(l, &p->n);
62 63
}

64
static void
65
proto_set_core_state(struct proto *p, uint state)
66
{
67
  list *l = NULL;
68

69 70
  p->core_state = state;

71 72 73 74 75 76 77 78 79 80 81
  if (p->debug & D_STATES)
    {
      char *name = proto_state_name(p);
      if (name != p->last_state_name_announced)
	{
	  p->last_state_name_announced = name;
	  PD(p, "State changed to %s", proto_state_name(p));
	}
    }
  else
    p->last_state_name_announced = NULL;
82

83
  rem_node(&p->n);
84 85
  switch (p->core_state)
    {
86 87 88
    case FS_HUNGRY:
      l = &inactive_proto_list;
      break;
89
    case FS_HAPPY:
90
      l = &active_proto_list;
91 92 93 94 95
      break;
    case FS_FLUSHING:
      l = &flush_proto_list;
      break;
    default:
96
      ASSERT(0);
97
    }
98
  proto_enqueue(l, p);
99
}
100

101 102 103 104 105 106 107 108
/**
 * proto_new - create a new protocol instance
 * @c: protocol configuration
 * @size: size of protocol data structure (each protocol instance is represented by
 * a structure starting with generic part [struct &proto] and continued
 * with data specific to the protocol)
 *
 * When a new configuration has been read in, the core code starts
109
 * initializing all the protocol instances configured by calling their
110 111 112 113 114
 * init() hooks with the corresponding instance configuration. The initialization
 * code of the protocol is expected to create a new instance according to the
 * configuration by calling this function and then modifying the default settings
 * to values wanted by the protocol.
 */
115
void *
116
proto_new(struct proto_config *c, unsigned size)
117
{
118
  struct protocol *pr = c->protocol;
119
  struct proto *p = mb_allocz(proto_pool, size);
120

121 122
  p->cf = c;
  p->debug = c->debug;
123
  p->mrtdump = c->mrtdump;
124
  p->name = c->name;
125 126
  p->preference = c->preference;
  p->disabled = c->disabled;
127
  p->proto = pr;
128
  p->table = c->table->table;
129
  p->hash_key = random_u32();
130
  c->proto = p;
131 132 133
  return p;
}

134 135 136
static void
proto_init_instance(struct proto *p)
{
137 138
  /* Here we cannot use p->cf->name since it won't survive reconfiguration */
  p->pool = rp_new(proto_pool, p->proto->name);
139 140
  p->attn = ev_new(p->pool);
  p->attn->data = p;
141

142 143 144
  if (graceful_restart_state == GRS_INIT)
    p->gr_recovery = 1;

145 146
  if (! p->proto->multitable)
    rt_lock_table(p->table);
147 148
}

149
extern pool *rt_table_pool;
150 151 152 153
/**
 * proto_add_announce_hook - connect protocol to a routing table
 * @p: protocol instance
 * @t: routing table to connect to
154
 * @stats: per-table protocol statistics
155
 *
156 157
 * This function creates a connection between the protocol instance @p and the
 * routing table @t, making the protocol hear all changes in the table.
158
 *
159 160 161 162 163 164
 * The announce hook is linked in the protocol ahook list. Announce hooks are
 * allocated from the routing table resource pool and when protocol accepts
 * routes also in the table ahook list. The are linked to the table ahook list
 * and unlinked from it depending on export_state (in proto_want_export_up() and
 * proto_want_export_down()) and they are automatically freed after the protocol
 * is flushed (in proto_fell_down()).
165
 *
166 167 168 169
 * Unless you want to listen to multiple routing tables (as the Pipe protocol
 * does), you needn't to worry about this function since the connection to the
 * protocol's primary routing table is initialized automatically by the core
 * code.
170
 */
171
struct announce_hook *
172
proto_add_announce_hook(struct proto *p, struct rtable *t, struct proto_stats *stats)
173 174 175 176
{
  struct announce_hook *h;

  DBG("Connecting protocol %s to table %s\n", p->name, t->name);
177
  PD(p, "Connected to table %s", t->name);
178 179

  h = mb_allocz(rt_table_pool, sizeof(struct announce_hook));
180 181
  h->table = t;
  h->proto = p;
182 183
  h->stats = stats;

184 185
  h->next = p->ahooks;
  p->ahooks = h;
186

187
  if (p->rt_notify && (p->export_state != ES_DOWN))
188
    add_tail(&t->hooks, &h->n);
189 190 191
  return h;
}

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
/**
 * proto_find_announce_hook - find announce hooks
 * @p: protocol instance
 * @t: routing table
 *
 * Returns pointer to announce hook or NULL
 */
struct announce_hook *
proto_find_announce_hook(struct proto *p, struct rtable *t)
{
  struct announce_hook *a;

  for (a = p->ahooks; a; a = a->next)
    if (a->table == t)
      return a;

  return NULL;
}

211 212 213 214 215 216 217 218 219 220
static void
proto_link_ahooks(struct proto *p)
{
  struct announce_hook *h;

  if (p->rt_notify)
    for(h=p->ahooks; h; h=h->next)
      add_tail(&h->table->hooks, &h->n);
}

221
static void
222
proto_unlink_ahooks(struct proto *p)
223 224 225
{
  struct announce_hook *h;

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
  if (p->rt_notify)
    for(h=p->ahooks; h; h=h->next)
      rem_node(&h->n);
}

static void
proto_free_ahooks(struct proto *p)
{
  struct announce_hook *h, *hn;

  for(h = p->ahooks; h; h = hn)
  {
    hn = h->next;
    mb_free(h);
  }

242
  p->ahooks = NULL;
243
  p->main_ahook = NULL;
244 245
}

246

247 248 249 250
/**
 * proto_config_new - create a new protocol configuration
 * @pr: protocol the configuration will belong to
 * @size: size of the structure including generic data
251
 * @class: SYM_PROTO or SYM_TEMPLATE
252 253 254 255 256 257 258 259
 *
 * Whenever the configuration file says that a new instance
 * of a routing protocol should be created, the parser calls
 * proto_config_new() to create a configuration entry for this
 * instance (a structure staring with the &proto_config header
 * containing all the generic items followed by protocol-specific
 * ones). Also, the configuration entry gets added to the list
 * of protocol instances kept in the configuration.
260 261 262 263 264
 *
 * The function is also used to create protocol templates (when class
 * SYM_TEMPLATE is specified), the only difference is that templates
 * are not added to the list of protocol instances and therefore not
 * initialized during protos_commit()).
265
 */
266
void *
267
proto_config_new(struct protocol *pr, unsigned size, int class)
268 269 270
{
  struct proto_config *c = cfg_allocz(size);

271 272
  if (class == SYM_PROTO)
    add_tail(&new_config->protos, &c->n);
273
  c->global = new_config;
274
  c->protocol = pr;
275
  c->name = pr->name;
276
  c->preference = pr->preference;
277
  c->class = class;
278
  c->out_filter = FILTER_REJECT;
279
  c->table = c->global->master_rtc;
280
  c->debug = new_config->proto_default_debug;
281
  c->mrtdump = new_config->proto_default_mrtdump;
282 283 284
  return c;
}

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
/**
 * proto_copy_config - copy a protocol configuration
 * @dest: destination protocol configuration
 * @src: source protocol configuration
 *
 * Whenever a new instance of a routing protocol is created from the
 * template, proto_copy_config() is called to copy a content of
 * the source protocol configuration to the new protocol configuration.
 * Name, class and a node in protos list of @dest are kept intact.
 * copy_config() protocol hook is used to copy protocol-specific data.
 */
void
proto_copy_config(struct proto_config *dest, struct proto_config *src)
{
  node old_node;
  int old_class;
  char *old_name;

  if (dest->protocol != src->protocol)
    cf_error("Can't copy configuration from a different protocol type");

  if (dest->protocol->copy_config == NULL)
    cf_error("Inheriting configuration for %s is not supported", src->protocol->name);

  DBG("Copying configuration from %s to %s\n", src->name, dest->name);

  /* 
   * Copy struct proto_config here. Keep original node, class and name.
   * protocol-specific config copy is handled by protocol copy_config() hook
   */

  old_node = dest->n;
  old_class = dest->class;
  old_name = dest->name;

  memcpy(dest, src, sizeof(struct proto_config));

  dest->n = old_node;
  dest->class = old_class;
  dest->name = old_name;

  dest->protocol->copy_config(dest, src);
}

329 330 331 332 333 334 335 336
/**
 * protos_preconfig - pre-configuration processing
 * @c: new configuration
 *
 * This function calls the preconfig() hooks of all routing
 * protocols available to prepare them for reading of the new
 * configuration.
 */
337
void
338
protos_preconfig(struct config *c)
339
{
340 341
  struct protocol *p;

342
  init_list(&c->protos);
343
  DBG("Protocol preconfig:");
344 345
  WALK_LIST(p, protocol_list)
    {
346
      DBG(" %s", p->name);
347
      p->name_counter = 0;
348
      if (p->preconfig)
349
	p->preconfig(p, c);
350
    }
351
  DBG("\n");
352 353
}

354 355 356 357 358
/**
 * protos_postconfig - post-configuration processing
 * @c: new configuration
 *
 * This function calls the postconfig() hooks of all protocol
359 360
 * instances specified in configuration @c. The hooks are not
 * called for protocol templates.
361
 */
362
void
363
protos_postconfig(struct config *c)
364
{
365
  struct proto_config *x;
366 367
  struct protocol *p;

368
  DBG("Protocol postconfig:");
369
  WALK_LIST(x, c->protos)
370
    {
371
      DBG(" %s", x->name);
372

373
      p = x->protocol;
374
      if (p->postconfig)
375 376
	p->postconfig(x);
    }
377
  DBG("\n");
378 379
}

380 381
extern struct protocol proto_unix_iface;

382 383 384 385 386 387 388 389
static struct proto *
proto_init(struct proto_config *c)
{
  struct protocol *p = c->protocol;
  struct proto *q = p->init(c);

  q->proto_state = PS_DOWN;
  q->core_state = FS_HUNGRY;
390
  q->export_state = ES_DOWN;
391 392
  q->last_state_change = now;

393
  proto_enqueue(&initial_proto_list, q);
394 395 396
  if (p == &proto_unix_iface)
    initial_device_proto = q;

397
  add_tail(&proto_list, &q->glob_node);
Martin Mareš's avatar
Martin Mareš committed
398
  PD(q, "Initializing%s", q->disabled ? " [disabled]" : "");
399 400 401
  return q;
}

402 403
int proto_reconfig_type;  /* Hack to propagate type info to pipe reconfigure hook */

404 405 406
static int
proto_reconfigure(struct proto *p, struct proto_config *oc, struct proto_config *nc, int type)
{
407
  struct announce_hook *ah = p->main_ahook;
408 409 410 411 412 413
  /* If the protocol is DOWN, we just restart it */
  if (p->proto_state == PS_DOWN)
    return 0;

  /* If there is a too big change in core attributes, ... */
  if ((nc->protocol != oc->protocol) ||
414
      (nc->disabled != p->disabled) ||
415
      (nc->table->table != oc->table->table))
416 417 418 419
    return 0;

  p->debug = nc->debug;
  p->mrtdump = nc->mrtdump;
420
  proto_reconfig_type = type;
421 422 423 424 425 426 427 428 429

  /* Execute protocol specific reconfigure hook */
  if (! (p->proto->reconfigure && p->proto->reconfigure(p, nc)))
    return 0;

  DBG("\t%s: same\n", oc->name);
  PD(p, "Reconfigured");
  p->cf = nc;
  p->name = nc->name;
430
  p->preference = nc->preference;
431

432 433 434 435 436

  /* Multitable protocols handle rest in their reconfigure hooks */
  if (p->proto->multitable)
    return 1;

437 438
  /* Update filters and limits in the main announce hook
     Note that this also resets limit state */
439
  if (ah)
440
    {
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
      ah->in_filter = nc->in_filter;
      ah->out_filter = nc->out_filter;
      ah->rx_limit = nc->rx_limit;
      ah->in_limit = nc->in_limit;
      ah->out_limit = nc->out_limit;
      ah->in_keep_filtered = nc->in_keep_filtered;

      if (p->proto_state == PS_UP)	/* Recheck export/import/receive limit */
        {
          struct proto_stats *stats = ah->stats;
          struct proto_limit *l = ah->in_limit;
          u32 all_routes = stats->imp_routes + stats->filt_routes;

          if (l && (stats->imp_routes >= l->limit)) proto_notify_limit(ah, l, PLD_IN, stats->imp_routes);

          l = ah->rx_limit;

          if (l && ( all_routes >= l->limit)) proto_notify_limit(ah, l, PLD_RX, all_routes );

          l = ah->out_limit;

          if (l && ( stats->exp_routes >= l->limit)) proto_notify_limit(ah, l, PLD_OUT, stats->exp_routes);
        }
464 465 466 467 468 469 470 471 472 473 474 475 476 477
    }

  /* Update routes when filters changed. If the protocol in not UP,
     it has no routes and we can ignore such changes */
  if ((p->proto_state != PS_UP) || (type == RECONFIG_SOFT))
    return 1;

  int import_changed = ! filter_same(nc->in_filter, oc->in_filter);
  int export_changed = ! filter_same(nc->out_filter, oc->out_filter);

  /* We treat a change in preferences by reimporting routes */
  if (nc->preference != oc->preference)
    import_changed = 1;

478 479 480
  if (import_changed || export_changed)
    log(L_INFO "Reloading protocol %s", p->name);

481 482
  /* If import filter changed, call reload hook */
  if (import_changed && ! (p->reload_routes && p->reload_routes(p)))
483 484 485
    {
      /* Now, the protocol is reconfigured. But route reload failed
	 and we have to do regular protocol restart. */
486
      log(L_INFO "Restarting protocol %s", p->name);
487
      p->disabled = 1;
488
      p->down_code = PDC_CF_RESTART;
489 490 491 492 493 494 495 496 497 498 499 500
      proto_rethink_goal(p);
      p->disabled = 0;
      proto_rethink_goal(p);
      return 1;
    }

  if (export_changed)
    proto_request_feeding(p);

  return 1;
}

501 502 503 504 505 506
/**
 * protos_commit - commit new protocol configuration
 * @new: new configuration
 * @old: old configuration or %NULL if it's boot time config
 * @force_reconfig: force restart of all protocols (used for example
 * when the router ID changes)
507
 * @type: type of reconfiguration (RECONFIG_SOFT or RECONFIG_HARD)
508 509 510 511 512 513 514 515 516 517 518 519
 *
 * Scan differences between @old and @new configuration and adjust all
 * protocol instances to conform to the new configuration.
 *
 * When a protocol exists in the new configuration, but it doesn't in the
 * original one, it's immediately started. When a collision with the other
 * running protocol would arise, the new protocol will be temporarily stopped
 * by the locking mechanism.
 *
 * When a protocol exists in the old configuration, but it doesn't in the
 * new one, it's shut down and deleted after the shutdown completes.
 *
520 521 522 523 524 525 526 527
 * When a protocol exists in both configurations, the core decides
 * whether it's possible to reconfigure it dynamically - it checks all
 * the core properties of the protocol (changes in filters are ignored
 * if type is RECONFIG_SOFT) and if they match, it asks the
 * reconfigure() hook of the protocol to see if the protocol is able
 * to switch to the new configuration.  If it isn't possible, the
 * protocol is shut down and a new instance is started with the new
 * configuration after the shutdown is completed.
528
 */
529
void
530
protos_commit(struct config *new, struct config *old, int force_reconfig, int type)
531
{
532 533
  struct proto_config *oc, *nc;
  struct proto *p, *n;
534
  struct symbol *sym;
535

536 537
  DBG("protos_commit:\n");
  if (old)
538
    {
539 540
      WALK_LIST(oc, old->protos)
	{
541 542
	  p = oc->proto;
	  sym = cf_find_symbol(oc->name);
543
	  if (sym && sym->class == SYM_PROTO && !new->shutdown)
544 545
	    {
	      /* Found match, let's check if we can smoothly switch to new configuration */
546
	      /* No need to check description */
547
	      nc = sym->def;
548 549 550 551 552 553 554
	      nc->proto = p;

	      /* We will try to reconfigure protocol p */
	      if (! force_reconfig && proto_reconfigure(p, oc, nc, type))
		continue;

	      /* Unsuccessful, we will restart it */
555 556 557 558 559 560 561
	      if (!p->disabled && !nc->disabled)
		log(L_INFO "Restarting protocol %s", p->name);
	      else if (p->disabled && !nc->disabled)
		log(L_INFO "Enabling protocol %s", p->name);
	      else if (!p->disabled && nc->disabled)
		log(L_INFO "Disabling protocol %s", p->name);

562
	      p->down_code = nc->disabled ? PDC_CF_DISABLE : PDC_CF_RESTART;
563 564
	      p->cf_new = nc;
	    }
565
	  else if (!new->shutdown)
566
	    {
567
	      log(L_INFO "Removing protocol %s", p->name);
568
	      p->down_code = PDC_CF_REMOVE;
569 570
	      p->cf_new = NULL;
	    }
571 572 573 574 575
	  else /* global shutdown */
	    {
	      p->down_code = PDC_CMD_SHUTDOWN;
	      p->cf_new = NULL;
	    }
576

577
	  p->reconfiguring = 1;
578 579 580
	  config_add_obstacle(old);
	  proto_rethink_goal(p);
	}
581
    }
582 583 584 585

  WALK_LIST(nc, new->protos)
    if (!nc->proto)
      {
586
	if (old)		/* Not a first-time configuration */
587
	  log(L_INFO "Adding protocol %s", nc->name);
588 589 590 591 592
	proto_init(nc);
      }
  DBG("\tdone\n");

  DBG("Protocol start\n");
593 594 595 596 597 598 599 600

  /* Start device protocol first */
  if (initial_device_proto)
  {
    proto_rethink_goal(initial_device_proto);
    initial_device_proto = NULL;
  }

601 602 603 604 605 606 607 608 609 610
  /* Determine router ID for the first time - it has to be here and not in
     global_commit() because it is postponed after start of device protocol */
  if (!config->router_id)
    {
      config->router_id = if_choose_router_id(config->router_id_from, 0);
      if (!config->router_id)
	die("Cannot determine router ID, please configure it manually");
    }

  /* Start all other protocols */
611 612
  WALK_LIST_DELSAFE(p, n, initial_proto_list)
    proto_rethink_goal(p);
613 614
}

615
static void
616
proto_rethink_goal(struct proto *p)
617
{
618
  struct protocol *q;
619
  byte goal;
620 621 622 623 624 625 626

  if (p->reconfiguring && p->core_state == FS_HUNGRY && p->proto_state == PS_DOWN)
    {
      struct proto_config *nc = p->cf_new;
      DBG("%s has shut down for reconfiguration\n", p->name);
      config_del_obstacle(p->cf->global);
      rem_node(&p->n);
627
      rem_node(&p->glob_node);
628 629 630
      mb_free(p);
      if (!nc)
	return;
631
      p = proto_init(nc);
632 633 634
    }

  /* Determine what state we want to reach */
635
  if (p->disabled || p->reconfiguring)
636
    goal = PS_DOWN;
637
  else
638
    goal = PS_UP;
639 640

  q = p->proto;
641
  if (goal == PS_UP) 			/* Going up */
642
    {
643
      if (p->proto_state == PS_DOWN && p->core_state == FS_HUNGRY)
644 645
	{
	  DBG("Kicking %s up\n", p->name);
646
	  PD(p, "Starting");
647
	  proto_init_instance(p);
648 649 650 651 652 653 654 655
	  proto_notify_state(p, (q->start ? q->start(p) : PS_UP));
	}
    }
  else 					/* Going down */
    {
      if (p->proto_state == PS_START || p->proto_state == PS_UP)
	{
	  DBG("Kicking %s down\n", p->name);
656
	  PD(p, "Shutting down");
657 658 659 660 661
	  proto_notify_state(p, (q->shutdown ? q->shutdown(p) : PS_DOWN));
	}
    }
}

662

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
/**
 * DOC: Graceful restart recovery
 *
 * Graceful restart of a router is a process when the routing plane (e.g. BIRD)
 * restarts but both the forwarding plane (e.g kernel routing table) and routing
 * neighbors keep proper routes, and therefore uninterrupted packet forwarding
 * is maintained.
 *
 * BIRD implements graceful restart recovery by deferring export of routes to
 * protocols until routing tables are refilled with the expected content. After
 * start, protocols generate routes as usual, but routes are not propagated to
 * them, until protocols report that they generated all routes. After that,
 * graceful restart recovery is finished and the export (and the initial feed)
 * to protocols is enabled.
 *
 * When graceful restart recovery need is detected during initialization, then
 * enabled protocols are marked with @gr_recovery flag before start. Such
 * protocols then decide how to proceed with graceful restart, participation is
 * voluntary. Protocols could lock the recovery by proto_graceful_restart_lock()
 * (stored in @gr_lock flag), which means that they want to postpone the end of
 * the recovery until they converge and then unlock it. They also could set
 * @gr_wait before advancing to %PS_UP, which means that the core should defer
 * route export to that protocol until the end of the recovery. This should be
 * done by protocols that expect their neigbors to keep the proper routes
 * (kernel table, BGP sessions with BGP graceful restart capability).
 *
 * The graceful restart recovery is finished when either all graceful restart
 * locks are unlocked or when graceful restart wait timer fires.
 *
 */
693

694
static void graceful_restart_done(struct timer *t);
695

696 697 698 699 700 701 702
/**
 * graceful_restart_recovery - request initial graceful restart recovery
 *
 * Called by the platform initialization code if the need for recovery
 * after graceful restart is detected during boot. Have to be called
 * before protos_commit().
 */
703 704 705 706 707 708
void
graceful_restart_recovery(void)
{
  graceful_restart_state = GRS_INIT;
}

709 710 711 712 713 714 715
/**
 * graceful_restart_init - initialize graceful restart
 *
 * When graceful restart recovery was requested, the function starts an active
 * phase of the recovery and initializes graceful restart wait timer. The
 * function have to be called after protos_commit().
 */
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
void
graceful_restart_init(void)
{
  if (!graceful_restart_state)
    return;

  log(L_INFO "Graceful restart started");

  if (!graceful_restart_locks)
    {
      graceful_restart_done(NULL);
      return;
    }

  graceful_restart_state = GRS_ACTIVE;
  gr_wait_timer = tm_new(proto_pool);
  gr_wait_timer->hook = graceful_restart_done;
  tm_start(gr_wait_timer, config->gr_wait);
}

736 737 738 739 740 741 742 743 744
/**
 * graceful_restart_done - finalize graceful restart
 *
 * When there are no locks on graceful restart, the functions finalizes the
 * graceful restart recovery. Protocols postponing route export until the end of
 * the recovery are awakened and the export to them is enabled. All other
 * related state is cleared. The function is also called when the graceful
 * restart wait timer fires (but there are still some locks).
 */
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
static void
graceful_restart_done(struct timer *t UNUSED)
{
  struct proto *p;
  node *n;

  log(L_INFO "Graceful restart done");
  graceful_restart_state = GRS_DONE;

  WALK_LIST2(p, n, proto_list, glob_node)
    {
      if (!p->gr_recovery)
	continue;

      /* Resume postponed export of routes */
      if ((p->proto_state == PS_UP) && p->gr_wait)
	proto_want_export_up(p);

      /* Cleanup */
      p->gr_recovery = 0;
      p->gr_wait = 0;
      p->gr_lock = 0;
    }

  graceful_restart_locks = 0;
}

void
graceful_restart_show_status(void)
{
  if (graceful_restart_state != GRS_ACTIVE)
    return;

  cli_msg(-24, "Graceful restart recovery in progress");
  cli_msg(-24, "  Waiting for %d protocols to recover", graceful_restart_locks);
  cli_msg(-24, "  Wait timer is %d/%d", tm_remains(gr_wait_timer), config->gr_wait);
}

783 784 785 786 787 788 789 790 791 792 793 794 795
/**
 * proto_graceful_restart_lock - lock graceful restart by protocol
 * @p: protocol instance
 *
 * This function allows a protocol to postpone the end of graceful restart
 * recovery until it converges. The lock is removed when the protocol calls
 * proto_graceful_restart_unlock() or when the protocol is stopped.
 *
 * The function have to be called during the initial phase of graceful restart
 * recovery and only for protocols that are part of graceful restart (i.e. their
 * @gr_recovery is set), which means it should be called from protocol start
 * hooks.
 */
796 797 798 799 800 801 802 803 804 805 806 807 808
void
proto_graceful_restart_lock(struct proto *p)
{
  ASSERT(graceful_restart_state == GRS_INIT);
  ASSERT(p->gr_recovery);

  if (p->gr_lock)
    return;

  p->gr_lock = 1;
  graceful_restart_locks++;
}

809 810 811 812 813 814 815
/**
 * proto_graceful_restart_unlock - unlock graceful restart by protocol
 * @p: protocol instance
 *
 * This function unlocks a lock from proto_graceful_restart_lock(). It is also
 * automatically called when the lock holding protocol went down.
 */
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
void
proto_graceful_restart_unlock(struct proto *p)
{
  if (!p->gr_lock)
    return;

  p->gr_lock = 0;
  graceful_restart_locks--;

  if ((graceful_restart_state == GRS_ACTIVE) && !graceful_restart_locks)
    tm_start(gr_wait_timer, 0);
}



831 832 833 834 835 836 837 838 839
/**
 * protos_dump_all - dump status of all protocols
 *
 * This function dumps status of all existing protocol instances to the
 * debug output. It involves printing of general status information
 * such as protocol states, its position on the protocol lists
 * and also calling of a dump() hook of the protocol to print
 * the internals.
 */
840 841 842 843
void
protos_dump_all(void)
{
  struct proto *p;
844
  struct announce_hook *a;
845 846 847

  debug("Protocols:\n");

848
  WALK_LIST(p, active_proto_list)
849
    {
850
      debug("  protocol %s state %s/%s\n", p->name,
851
	    p_states[p->proto_state], c_states[p->core_state]);
852 853 854 855 856 857 858 859
      for (a = p->ahooks; a; a = a->next)
	{
	  debug("\tTABLE %s\n", a->table->name);
	  if (a->in_filter)
	    debug("\tInput filter: %s\n", filter_name(a->in_filter));
	  if (a->out_filter != FILTER_REJECT)
	    debug("\tOutput filter: %s\n", filter_name(a->out_filter));
	}
860 861
      if (p->disabled)
	debug("\tDISABLED\n");
862 863
      else if (p->proto->dump)
	p->proto->dump(p);
864
    }
865
  WALK_LIST(p, inactive_proto_list)
866 867 868
    debug("  inactive %s: state %s/%s\n", p->name, p_states[p->proto_state], c_states[p->core_state]);
  WALK_LIST(p, initial_proto_list)
    debug("  initial %s\n", p->name);
869 870
  WALK_LIST(p, flush_proto_list)
    debug("  flushing %s\n", p->name);
871 872
}

873 874 875 876 877 878
/**
 * proto_build - make a single protocol available
 * @p: the protocol
 *
 * After the platform specific initialization code uses protos_build()
 * to add all the standard protocols, it should call proto_build() for
879
 * all platform specific protocols to inform the core that they exist.
880
 */
881 882 883 884 885 886 887 888 889 890 891
void
proto_build(struct protocol *p)
{
  add_tail(&protocol_list, &p->n);
  if (p->attr_class)
    {
      ASSERT(!attr_class_to_protocol[p->attr_class]);
      attr_class_to_protocol[p->attr_class] = p;
    }
}

892 893 894
/* FIXME: convert this call to some protocol hook */
extern void bfd_init_all(void);

895 896 897 898 899 900 901 902 903
/**
 * protos_build - build a protocol list
 *
 * This function is called during BIRD startup to insert
 * all standard protocols to the global protocol list. Insertion
 * of platform specific protocols (such as the kernel syncer)
 * is in the domain of competence of the platform dependent
 * startup code.
 */
904 905 906 907
void
protos_build(void)
{
  init_list(&protocol_list);
908 909 910 911 912
  init_list(&proto_list);
  init_list(&active_proto_list);
  init_list(&inactive_proto_list);
  init_list(&initial_proto_list);
  init_list(&flush_proto_list);
913
  proto_build(&proto_device);
914 915 916
#ifdef CONFIG_RADV
  proto_build(&proto_radv);
#endif
917
#ifdef CONFIG_RIP
918
  proto_build(&proto_rip);
919 920
#endif
#ifdef CONFIG_STATIC
921
  proto_build(&proto_static);
922 923
#endif
#ifdef CONFIG_OSPF
924
  proto_build(&proto_ospf);
925 926
#endif
#ifdef CONFIG_PIPE
927
  proto_build(&proto_pipe);
928 929
#endif
#ifdef CONFIG_BGP
930
  proto_build(&proto_bgp);
931
#endif
932
#ifdef CONFIG_BFD
933
  proto_build(&proto_bfd);
934 935
  bfd_init_all();
#endif
936

937
  proto_pool = rp_new(&root_pool, "Protocols");
938
  proto_flush_event = ev_new(proto_pool);
939
  proto_flush_event->hook = proto_flush_loop;
940 941
  proto_shutdown_timer = tm_new(proto_pool);
  proto_shutdown_timer->hook = proto_shutdown_loop;
942 943
}

944 945 946 947 948
static void
proto_feed_more(void *P)
{
  struct proto *p = P;

949
  if (p->export_state != ES_FEEDING)
950
    return;
951 952

  DBG("Feeding protocol %s continued\n", p->name);
953 954
  if (rt_feed_baby(p))
    {
955 956 957 958 959
      DBG("Feeding protocol %s finished\n", p->name);
      p->export_state = ES_READY;

      if (p->feed_done)
	p->feed_done(p);
960 961 962 963 964 965 966 967
    }
  else
    {
      p->attn->hook = proto_feed_more;
      ev_schedule(p->attn);		/* Will continue later... */
    }
}

968
static void
969
proto_feed_initial(void *P)
970 971 972
{
  struct proto *p = P;

973
  if (p->export_state != ES_FEEDING)
974 975
    return;

976
  DBG("Feeding protocol %s\n", p->name);
977

978
  if_feed_baby(p);
979
  proto_feed_more(P);
980 981
}

982
static void
983
proto_schedule_feed(struct proto *p, int initial)
984 985
{
  DBG("%s: Scheduling meal\n", p->name);
986

987 988
  p->export_state = ES_FEEDING;
  p->refeeding = !initial;
989

990
  p->attn->hook = initial ? proto_feed_initial : proto_feed_more;
991 992 993
  ev_schedule(p->attn);
}

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
/*
 * Flushing loop is responsible for flushing routes and protocols
 * after they went down. It runs in proto_flush_event. At the start of
 * one round, protocols waiting to flush are marked in
 * proto_schedule_flush_loop(). At the end of the round (when routing
 * table flush is complete), marked protocols are flushed and a next
 * round may start.
 */

static int flush_loop_state;	/* 1 -> running */

static void
proto_schedule_flush_loop(void)
{
  struct proto *p;
1009
  struct announce_hook *h;
1010 1011 1012 1013 1014 1015

  if (flush_loop_state)
    return;
  flush_loop_state = 1;

  WALK_LIST(p, flush_proto_list)
1016
  {
1017
    p->flushing = 1;
1018
    for (h=p->ahooks; h; h=h->next)
1019
      rt_mark_for_prune(h->table);
1020
  }
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036

  ev_schedule(proto_flush_event);
}

static void
proto_flush_loop(void *unused UNUSED)
{
  struct proto *p;

  if (! rt_prune_loop())
    {
      /* Rtable pruning is not finished */
      ev_schedule(proto_flush_event);
      return;
    }

1037 1038
  rt_prune_sources();

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
 again:
  WALK_LIST(p, flush_proto_list)
    if (p->flushing)
      {
	/* This will flush interfaces in the same manner
	   like rt_prune_all() flushes routes */
	if (p->proto == &proto_unix_iface)
	  if_flush_ifaces(p);

	DBG("Flushing protocol %s\n", p->name);
	p->flushing = 0;
1050
	proto_set_core_state(p, FS_HUNGRY);
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
	if (p->proto_state == PS_DOWN)
	  proto_fell_down(p);
	goto again;
      }

  /* This round finished, perhaps there will be another one */
  flush_loop_state = 0;
  if (!EMPTY_LIST(flush_proto_list))
    proto_schedule_flush_loop();
}


1063 1064
/* Temporary hack to propagate restart to BGP */
int proto_restart;
1065

1066 1067 1068 1069 1070 1071 1072 1073
static void
proto_shutdown_loop(struct timer *t UNUSED)
{
  struct proto *p, *p_next;

  WALK_LIST_DELSAFE(p, p_next, active_proto_list)
    if (p->down_sched)
      {
1074
	proto_restart = (p->down_sched == PDS_RESTART);
1075 1076 1077

	p->disabled = 1;
	proto_rethink_goal(p);
1078
	if (proto_restart)
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
	  {
	    p->disabled = 0;
	    proto_rethink_goal(p);
	  }
      }
}

static inline void
proto_schedule_down(struct proto *p, byte restart, byte code)
{
  /* Does not work for other states (even PS_START) */
  ASSERT(p->proto_state == PS_UP);

  /* Scheduled restart may change to shutdown, but not otherwise */
  if (p->down_sched == PDS_DISABLE)
    return;

  p->down_sched = restart ? PDS_RESTART : PDS_DISABLE;
  p->down_code = code;
  tm_start_max(proto_shutdown_timer, restart ? 2 : 0);
}


1102 1103 1104 1105 1106 1107
/**
 * proto_request_feeding - request feeding routes to the protocol
 * @p: given protocol 
 *
 * Sometimes it is needed to send again all routes to the
 * protocol. This is called feeding and can be requested by this
1108 1109 1110
 * function. This would cause protocol export state transition
 * to ES_FEEDING (during feeding) and when completed, it will
 * switch back to ES_READY. This function can be called even
1111 1112 1113 1114 1115 1116 1117
 * when feeding is already running, in that case it is restarted.
 */
void
proto_request_feeding(struct proto *p)
{
  ASSERT(p->proto_state == PS_UP);

1118 1119 1120 1121
  /* Do nothing if we are still waiting for feeding */
  if (p->export_state == ES_DOWN)
    return;

1122
  /* If we are already feeding, we want to restart it */
1123
  if (p->export_state == ES_FEEDING)
1124 1125 1126 1127 1128 1129 1130 1131
    {
      /* Unless feeding is in initial state */
      if (p->attn->hook == proto_feed_initial)
	return;

      rt_feed_baby_abort(p);
    }

1132 1133 1134 1135 1136 1137 1138 1139
  /* FIXME: This should be changed for better support of multitable protos */
  struct announce_hook *ah;
  for (ah = p->ahooks; ah; ah = ah->next)
    proto_reset_limit(ah->out_limit);

  /* Hack: reset exp_routes during refeed, and do not decrease it later */
  p->stats.exp_routes = 0;

1140 1141 1142
  proto_schedule_feed(p, 0);
}

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
static const char *
proto_limit_name(struct proto_limit *l)
{
  const char *actions[] = {
    [PLA_WARN] = "warn",
    [PLA_BLOCK] = "block",
    [PLA_RESTART] = "restart",
    [PLA_DISABLE] = "disable",
  };

  return actions[l->action];
}

/**
 * proto_notify_limit: notify about limit hit and take appropriate action
 * @ah: announce hook
 * @l: limit being hit
1160
 * @dir: limit direction (PLD_*)
1161
 * @rt_count: the number of routes 
1162 1163 1164
 *
 * The function is called by the route processing core when limit @l
 * is breached. It activates the limit and tooks appropriate action
1165
 * according to @l->action.
1166
 */
1167
void
1168
proto_notify_limit(struct announce_hook *ah, struct proto_limit *l, int dir, u32 rt_count)
1169
{
1170 1171
  const char *dir_name[PLD_MAX] = { "receive", "import" , "export" };
  const byte dir_down[PLD_MAX] = { PDC_RX_LIMIT_HIT, PDC_IN_LIMIT_HIT, PDC_OUT_LIMIT_HIT };
1172 1173
  struct proto *p = ah->proto;

1174 1175
  if (l->state == PLS_BLOCKED)
    return;
1176

1177 1178
  /* For warning action, we want the log message every time we hit the limit */
  if (!l->state || ((l->action == PLA_WARN) && (rt_count == l->limit)))
1179
    log(L_WARN "Protocol %s hits route %s limit (%d), action: %s",
1180
	p->name, dir_name[dir], l->limit, proto_limit_name(l));
1181 1182 1183 1184

  switch (l->action)
    {
    case PLA_WARN:
1185 1186
      l->state = PLS_ACTIVE;
      break;
1187 1188

    case PLA_BLOCK:
1189 1190
      l->state = PLS_BLOCKED;
      break;
1191 1192 1193

    case PLA_RESTART:
    case PLA_DISABLE:
1194
      l->state = PLS_BLOCKED;
1195
      proto_schedule_down(p, l->action == PLA_RESTART, dir_down[dir]);
1196
      break;
1197 1198 1199
    }
}

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275

static void
proto_want_core_up(struct proto *p)
{
  ASSERT(p->core_state == FS_HUNGRY);

  if (!p->proto->multitable)
    {
      p->main_source = rt_get_source(p, 0);
      rt_lock_source(p->main_source);

      /* Connect protocol to routing table */
      p->main_ahook = proto_add_announce_hook(p, p->table, &p->stats);
      p->main_ahook->in_filter = p->cf->in_filter;
      p->main_ahook->out_filter = p->cf->out_filter;
      p->main_ahook->rx_limit = p->cf->rx_limit;
      p->main_ahook->in_limit = p->cf->in_limit;
      p->main_ahook->out_limit = p->cf->out_limit;
      p->main_ahook->in_keep_filtered = p->cf->in_keep_filtered;

      proto_reset_limit(p->main_ahook->rx_limit);
      proto_reset_limit(p->main_ahook->in_limit);
      proto_reset_limit(p->main_ahook->out_limit);
    }

  proto_set_core_state(p, FS_HAPPY);
}

static void
proto_want_export_up(struct proto *p)
{
  ASSERT(p->core_state == CS_HAPPY);
  ASSERT(p->export_state == ES_DOWN);

  proto_link_ahooks(p);
  proto_schedule_feed(p, 1); /* Sets ES_FEEDING */
}

static void
proto_want_export_down(struct proto *p)
{
  ASSERT(p->export_state != ES_DOWN);

  /* Need to abort feeding */
  if (p->export_state == ES_FEEDING)
    rt_feed_baby_abort(p);

  p->export_state = ES_DOWN;
  proto_unlink_ahooks(p);
}

static void
proto_want_core_down(struct proto *p)
{
  ASSERT(p->core_state == CS_HAPPY);
  ASSERT(p->export_state == ES_DOWN);

  proto_set_core_state(p, FS_FLUSHING);
  proto_schedule_flush_loop();

  if (!p->proto->multitable)
    {
      rt_unlock_source(p->main_source);
      p->main_source = NULL;
    }
}

static void
proto_falling_down(struct proto *p)
{
  p->gr_recovery = 0;
  p->gr_wait = 0;
  if (p->gr_lock)
    proto_graceful_restart_unlock(p);
}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
static void
proto_fell_down(struct proto *p)
{
  DBG("Protocol %s down\n", p->name);

  u32 all_routes = p->stats.imp_routes + p->stats.filt_routes;
  if (all_routes != 0)
    log(L_ERR "Protocol %s is down but still has %d routes", p->name, all_routes);

  bzero(&p->stats, sizeof(struct proto_stats));
  proto_free_ahooks(p);

  if (! p->proto->multitable)
    rt_unlock_table(p->table);

  if (p->proto->cleanup)
    p->proto->cleanup(p);

  proto_rethink_goal(p);
}

1297

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
/**
 * proto_notify_state - notify core about protocol state change
 * @p: protocol the state of which has changed
 * @ps: the new status
 *
 * Whenever a state of a protocol changes due to some event internal
 * to the protocol (i.e., not inside a start() or shutdown() hook),
 * it should immediately notify the core about the change by calling
 * proto_notify_state() which will write the new state to the &proto
 * structure and take all the actions necessary to adapt to the new
1308 1309 1310
 * state. State change to PS_DOWN immediately frees resources of protocol
 * and might execute start callback of protocol; therefore,
 * it should be used at tail positions of protocol callbacks.
1311
 */
1312 1313 1314 1315 1316
void
proto_notify_state(struct proto *p, unsigned ps)
{
  unsigned ops = p->proto_state;
  unsigned cs = p->core_state;
1317
  unsigned es = p->export_state;
1318 1319 1320 1321 1322

  DBG("%s reporting state transition %s/%s -> */%s\n", p->name, c_states[cs], p_states[ops], p_states[ps]);
  if (ops == ps)
    return;

1323
  p->proto_state = ps;
1324
  p->last_state_change = now;
1325

1326 1327
  switch (ps)
    {
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
    case PS_START:
      ASSERT(ops == PS_DOWN || ops == PS_UP);
      ASSERT(cs == FS_HUNGRY || cs == FS_HAPPY);

      if (es != ES_DOWN)
	proto_want_export_down(p);
      break;

    case PS_UP:
      ASSERT(ops == PS_DOWN || ops == PS_START);
      ASSERT(cs == FS_HUNGRY || cs == FS_HAPPY);
      ASSERT(es == ES_DOWN);

      if (cs == FS_HUNGRY)
	proto_want_core_up(p);
      if (!p->gr_wait)
	proto_want_export_up(p);
      break;

    case PS_STOP:
      ASSERT(ops == PS_START || ops == PS_UP);

      p->down_sched = 0;

      if (es != ES_DOWN)
	proto_want_export_down(p);
      if (cs == FS_HAPPY)
	proto_want_core_down(p);
      proto_falling_down(p);
      break;

1359
    case PS_DOWN:
1360 1361
      p->down_code = 0;
      p->down_sched = 0;
1362

1363 1364 1365 1366 1367 1368
      if (es != ES_DOWN)
	proto_want_export_down(p);
      if (cs == FS_HAPPY)
	proto_want_core_down(p);
      if (ops != PS_STOP)
	proto_falling_down(p);
1369

1370 1371 1372 1373
      neigh_prune(); // FIXME convert neighbors to resource?
      rfree(p->pool);
      p->pool = NULL;

1374
      if (cs == FS_HUNGRY)		/* Shutdown finished */
1375 1376 1377 1378
	{
	  proto_fell_down(p);
	  return;			/* The protocol might have ceased to exist */
	}
1379
      break;
1380

1381
    default:
1382
      bug("%s: Invalid state %d", p->name, ps);
1383
    }
1384
}
1385

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
/*
 *  CLI Commands
 */

static char *
proto_state_name(struct proto *p)
{
#define P(x,y) ((x << 4) | y)
  switch (P(p->proto_state, p->core_state))
    {
    case P(PS_DOWN, FS_HUNGRY):		return "down";
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
    case P(PS_START, FS_HUNGRY):
    case P(PS_START, FS_HAPPY):		return "start";
    case P(PS_UP, FS_HAPPY):
      switch (p->export_state)
	{
	case ES_DOWN:			return "wait";
	case ES_FEEDING:		return "feed";
	case ES_READY:			return "up";
	default:      			return "???";
	}
1407 1408 1409 1410 1411 1412 1413 1414
    case P(PS_STOP, FS_HUNGRY):		return "stop";
    case P(PS_STOP, FS_FLUSHING):
    case P(PS_DOWN, FS_FLUSHING):	return "flush";
    default:      			return "???";
    }
#undef P
}

1415
static void
1416
proto_show_stats(struct proto_stats *s, int in_keep_filtered)
1417
{
1418 1419 1420
  if (in_keep_filtered)
    cli_msg(-1006, "  Routes:         %u imported, %u filtered, %u exported, %u preferred", 
	    s->imp_routes, s->filt_routes, s->exp_routes, s->pref_routes);
1421 1422 1423 1424
  else
    cli_msg(-1006, "  Routes:         %u imported, %u exported, %u preferred", 
	    s->imp_routes, s->exp_routes, s->pref_routes);

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
  cli_msg(-1006, "  Route change stats:     received   rejected   filtered    ignored   accepted");
  cli_msg(-1006, "    Import updates:     %10u %10u %10u %10u %10u",
	  s->imp_updates_received, s->imp_updates_invalid,
	  s->imp_updates_filtered, s->imp_updates_ignored,
	  s->imp_updates_accepted);
  cli_msg(-1006, "    Import withdraws:   %10u %10u        --- %10u %10u",
	  s->imp_withdraws_received, s->imp_withdraws_invalid,
	  s->imp_withdraws_ignored, s->imp_withdraws_accepted);
  cli_msg(-1006, "    Export updates:     %10u %10u %10u        --- %10u",
	  s->exp_updates_received, s->exp_updates_rejected,
	  s->exp_updates_filtered, s->exp_updates_accepted);
  cli_msg(-1006, "    Export withdraws:   %10u        ---        ---        --- %10u",
	  s->exp_withdraws_received, s->exp_withdraws_accepted);
}

1440 1441 1442
void
proto_show_limit(struct proto_limit *l, const char *dsc)
{
1443 1444 1445 1446 1447
  if (!l)
    return;

  cli_msg(-1006, "  %-16s%d%s", dsc, l->limit, l->state ? " [HIT]" : "");
  cli_msg(-1006, "    Action:       %s", proto_limit_name(l));
1448 1449
}

1450 1451
void
proto_show_basic_info(struct proto *p)
1452
{
1453 1454 1455 1456
  // cli_msg(-1006, "  Table:          %s", p->table->name);
  cli_msg(-1006, "  Preference:     %d", p->preference);
  cli_msg(-1006, "  Input filter:   %s", filter_name(p->cf->in_filter));
  cli_msg(-1006, "  Output filter:  %s", filter_name(p->cf->out_filter));
1457

1458 1459 1460 1461 1462
  if (graceful_restart_state == GRS_ACTIVE)
    cli_msg(-1006, "  GR recovery:   %s%s",
	    p->gr_lock ? " pending" : "",
	    p->gr_wait ? " waiting" : "");

1463
  proto_show_limit(p->cf->rx_limit, "Receive limit:");
1464
  proto_show_limit(p->cf->in_limit, "Import limit:");
1465
  proto_show_limit(p->cf->out_limit, "Export limit:");
1466

1467
  if (p->proto_state != PS_DOWN)
1468
    proto_show_stats(&p->stats, p->cf->in_keep_filtered);
1469 1470
}

1471 1472
void
proto_cmd_show(struct proto *p, unsigned int verbose, int cnt)
1473
{
1474
  byte buf[256], tbuf[TM_DATETIME_BUFFER_SIZE];
1475

1476 1477 1478 1479
  /* First protocol - show header */
  if (!cnt)
    cli_msg(-2002, "name     proto    table    state  since       info");

1480 1481 1482
  buf[0] = 0;
  if (p->proto->get_status)
    p->proto->get_status(p, buf);
1483 1484
  tm_format_datetime(tbuf, &config->tf_proto, p->last_state_change);
  cli_msg(-1002, "%-8s %-8s %-8s %-5s  %-10s  %s",
1485 1486 1487 1488
	  p->name,
	  p->proto->name,
	  p->table->name,
	  proto_state_name(p),
1489
	  tbuf,
1490
	  buf);
1491 1492
  if (verbose)
    {
1493 1494
      if (p->cf->dsc)
	cli_msg(-1006, "  Description:    %s", p->cf->dsc);
1495 1496
      if (p->cf->router_id)
	cli_msg(-1006, "  Router ID:      %R", p->cf->router_id);
1497

1498 1499
      if (p->proto->show_proto_info)
	p->proto->show_proto_info(p);
1500 1501
      else
	proto_show_basic_info(p);
1502

1503
      cli_msg(-1006, "");
1504 1505 1506
    }
}

1507
void
1508
proto_cmd_disable(struct proto *p, unsigned int arg UNUSED, int cnt UNUSED)
1509
{
1510
  if (p->disabled)
1511
    {
1512
      cli_msg(-8, "%s: already disabled", p->name);
1513 1514
      return;
    }
1515 1516 1517

  log(L_INFO "Disabling protocol %s", p->name);
  p->disabled = 1;
1518
  p->