io.c 32.6 KB
Newer Older
1 2 3
/*
 *	BIRD Internet Routing Daemon -- Unix I/O
 *
4
 *	(c) 1998--2004 Martin Mares <mj@ucw.cz>
5
 *      (c) 2004       Ondrej Filip <feela@network.cz>
6 7 8 9 10 11
 *
 *	Can be freely distributed and used under the terms of the GNU GPL.
 */

#include <stdio.h>
#include <stdlib.h>
12
#include <time.h>
13 14 15 16
#include <sys/time.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/fcntl.h>
17
#include <sys/uio.h>
18
#include <sys/un.h>
19 20 21 22 23 24 25 26
#include <unistd.h>
#include <errno.h>

#include "nest/bird.h"
#include "lib/lists.h"
#include "lib/resource.h"
#include "lib/timer.h"
#include "lib/socket.h"
27
#include "lib/event.h"
28
#include "lib/string.h"
29 30 31
#include "nest/iface.h"

#include "lib/unix.h"
32
#include "lib/sysio.h"
33

34
/* Maximum number of calls of tx handler for one socket in one
35 36 37 38 39
 * select iteration. Should be small enough to not monopolize CPU by
 * one protocol instance.
 */
#define MAX_STEPS 4

40 41 42 43 44
/* Maximum number of calls of rx handler for all sockets in one select
   iteration. RX callbacks are often much more costly so we limit
   this to gen small latencies */
#define MAX_RX_STEPS 4

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
/*
 *	Tracked Files
 */

struct rfile {
  resource r;
  FILE *f;
};

static void
rf_free(resource *r)
{
  struct rfile *a = (struct rfile *) r;

  fclose(a->f);
}

static void
rf_dump(resource *r)
{
  struct rfile *a = (struct rfile *) r;

  debug("(FILE *%p)\n", a->f);
}

static struct resclass rf_class = {
  "FILE",
  sizeof(struct rfile),
  rf_free,
74 75
  rf_dump,
  NULL
76 77 78
};

void *
79
tracked_fopen(pool *p, char *name, char *mode)
80 81 82 83 84 85 86 87 88 89 90
{
  FILE *f = fopen(name, mode);

  if (f)
    {
      struct rfile *r = ralloc(p, &rf_class);
      r->f = f;
    }
  return f;
}

91 92 93 94 95
/**
 * DOC: Timers
 *
 * Timers are resources which represent a wish of a module to call
 * a function at the specified time. The platform dependent code
Martin Mareš's avatar
Martin Mareš committed
96
 * doesn't guarantee exact timing, only that a timer function
97 98
 * won't be called before the requested time.
 *
99 100 101 102 103
 * In BIRD, time is represented by values of the &bird_clock_t type
 * which are integral numbers interpreted as a relative number of seconds since
 * some fixed time point in past. The current time can be read
 * from variable @now with reasonable accuracy and is monotonic. There is also
 * a current 'absolute' time in variable @now_real reported by OS.
104 105 106 107 108
 *
 * Each timer is described by a &timer structure containing a pointer
 * to the handler function (@hook), data private to this function (@data),
 * time the function should be called at (@expires, 0 for inactive timers),
 * for the other fields see |timer.h|.
109 110 111 112 113 114 115
 */

#define NEAR_TIMER_LIMIT 4

static list near_timers, far_timers;
static bird_clock_t first_far_timer = TIME_INFINITY;

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
bird_clock_t now, now_real;

static void
update_times_plain(void)
{
  bird_clock_t new_time = time(NULL);
  int delta = new_time - now_real;

  if ((delta >= 0) && (delta < 60))
    now += delta;
  else if (now_real != 0)
   log(L_WARN "Time jump, delta %d s", delta);

  now_real = new_time;
}

static void
update_times_gettime(void)
{
  struct timespec ts;
  int rv;

  rv = clock_gettime(CLOCK_MONOTONIC, &ts);
  if (rv != 0)
    die("clock_gettime: %m");

  if (ts.tv_sec != now) {
    if (ts.tv_sec < now)
      log(L_ERR "Monotonic timer is broken");

    now = ts.tv_sec;
    now_real = time(NULL);
  }
}

static int clock_monotonic_available;

static inline void
update_times(void)
{
  if (clock_monotonic_available)
    update_times_gettime();
  else
    update_times_plain();
}

static inline void
init_times(void)
{
 struct timespec ts;
 clock_monotonic_available = (clock_gettime(CLOCK_MONOTONIC, &ts) == 0);
 if (!clock_monotonic_available)
   log(L_WARN "Monotonic timer is missing");
}

171 172 173 174 175 176 177 178 179 180 181 182 183 184

static void
tm_free(resource *r)
{
  timer *t = (timer *) r;

  tm_stop(t);
}

static void
tm_dump(resource *r)
{
  timer *t = (timer *) r;

185
  debug("(code %p, data %p, ", t->hook, t->data);
186 187 188 189
  if (t->randomize)
    debug("rand %d, ", t->randomize);
  if (t->recurrent)
    debug("recur %d, ", t->recurrent);
190 191 192 193 194 195 196 197 198 199
  if (t->expires)
    debug("expires in %d sec)\n", t->expires - now);
  else
    debug("inactive)\n");
}

static struct resclass tm_class = {
  "Timer",
  sizeof(timer),
  tm_free,
200 201
  tm_dump,
  NULL
202 203
};

204 205 206 207 208 209 210 211
/**
 * tm_new - create a timer
 * @p: pool
 *
 * This function creates a new timer resource and returns
 * a pointer to it. To use the timer, you need to fill in
 * the structure fields and call tm_start() to start timing.
 */
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
timer *
tm_new(pool *p)
{
  timer *t = ralloc(p, &tm_class);
  return t;
}

static inline void
tm_insert_near(timer *t)
{
  node *n = HEAD(near_timers);

  while (n->next && (SKIP_BACK(timer, n, n)->expires < t->expires))
    n = n->next;
  insert_node(&t->n, n->prev);
}

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
/**
 * tm_start - start a timer
 * @t: timer
 * @after: number of seconds the timer should be run after
 *
 * This function schedules the hook function of the timer to
 * be called after @after seconds. If the timer has been already
 * started, it's @expire time is replaced by the new value.
 *
 * You can have set the @randomize field of @t, the timeout
 * will be increased by a random number of seconds chosen
 * uniformly from range 0 .. @randomize.
 *
 * You can call tm_start() from the handler function of the timer
 * to request another run of the timer. Also, you can set the @recurrent
 * field to have the timer re-added automatically with the same timeout.
 */
246 247 248 249 250 251
void
tm_start(timer *t, unsigned after)
{
  bird_clock_t when;

  if (t->randomize)
252
    after += random() % (t->randomize + 1);
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
  when = now + after;
  if (t->expires == when)
    return;
  if (t->expires)
    rem_node(&t->n);
  t->expires = when;
  if (after <= NEAR_TIMER_LIMIT)
    tm_insert_near(t);
  else
    {
      if (!first_far_timer || first_far_timer > when)
	first_far_timer = when;
      add_tail(&far_timers, &t->n);
    }
}

269 270 271 272 273 274 275
/**
 * tm_stop - stop a timer
 * @t: timer
 *
 * This function stops a timer. If the timer is already stopped,
 * nothing happens.
 */
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
void
tm_stop(timer *t)
{
  if (t->expires)
    {
      rem_node(&t->n);
      t->expires = 0;
    }
}

static void
tm_dump_them(char *name, list *l)
{
  node *n;
  timer *t;

  debug("%s timers:\n", name);
  WALK_LIST(n, *l)
    {
      t = SKIP_BACK(timer, n, n);
      debug("%p ", t);
      tm_dump(&t->r);
    }
  debug("\n");
}

void
tm_dump_all(void)
{
  tm_dump_them("Near", &near_timers);
  tm_dump_them("Far", &far_timers);
}

static inline time_t
tm_first_shot(void)
{
  time_t x = first_far_timer;

  if (!EMPTY_LIST(near_timers))
    {
      timer *t = SKIP_BACK(timer, n, HEAD(near_timers));
      if (t->expires < x)
	x = t->expires;
    }
  return x;
}

static void
tm_shot(void)
{
  timer *t;
  node *n, *m;

  if (first_far_timer <= now)
    {
331
      bird_clock_t limit = now + NEAR_TIMER_LIMIT;
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
      first_far_timer = TIME_INFINITY;
      n = HEAD(far_timers);
      while (m = n->next)
	{
	  t = SKIP_BACK(timer, n, n);
	  if (t->expires <= limit)
	    {
	      rem_node(n);
	      tm_insert_near(t);
	    }
	  else if (t->expires < first_far_timer)
	    first_far_timer = t->expires;
	  n = m;
	}
    }
  while ((n = HEAD(near_timers)) -> next)
    {
349
      int delay;
350 351 352 353
      t = SKIP_BACK(timer, n, n);
      if (t->expires > now)
	break;
      rem_node(n);
354
      delay = t->expires - now;
355
      t->expires = 0;
356 357 358 359 360 361 362
      if (t->recurrent)
	{
	  int i = t->recurrent - delay;
	  if (i < 0)
	    i = 0;
	  tm_start(t, i);
	}
363 364 365 366
      t->hook(t);
    }
}

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
/**
 * tm_parse_datetime - parse a date and time
 * @x: datetime string
 *
 * tm_parse_datetime() takes a textual representation of
 * a date and time (dd-mm-yyyy hh:mm:ss)
 * and converts it to the corresponding value of type &bird_clock_t.
 */
bird_clock_t
tm_parse_datetime(char *x)
{
  struct tm tm;
  int n;
  time_t t;

  if (sscanf(x, "%d-%d-%d %d:%d:%d%n", &tm.tm_mday, &tm.tm_mon, &tm.tm_year, &tm.tm_hour, &tm.tm_min, &tm.tm_sec, &n) != 6 || x[n])
    return tm_parse_date(x);
  tm.tm_mon--;
  tm.tm_year -= 1900;
  t = mktime(&tm);
  if (t == (time_t) -1)
    return 0;
  return t;
}
391 392 393 394 395 396 397
/**
 * tm_parse_date - parse a date
 * @x: date string
 *
 * tm_parse_date() takes a textual representation of a date (dd-mm-yyyy)
 * and converts it to the corresponding value of type &bird_clock_t.
 */
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
bird_clock_t
tm_parse_date(char *x)
{
  struct tm tm;
  int n;
  time_t t;

  if (sscanf(x, "%d-%d-%d%n", &tm.tm_mday, &tm.tm_mon, &tm.tm_year, &n) != 3 || x[n])
    return 0;
  tm.tm_mon--;
  tm.tm_year -= 1900;
  tm.tm_hour = tm.tm_min = tm.tm_sec = 0;
  t = mktime(&tm);
  if (t == (time_t) -1)
    return 0;
  return t;
}

416 417
static void
tm_format_reltime(char *x, struct tm *tm, bird_clock_t delta)
418
{
419 420
  static char *month_names[12] = { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
				   "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
421

422 423 424 425 426 427
  if (delta < 20*3600)
    bsprintf(x, "%02d:%02d", tm->tm_hour, tm->tm_min);
  else if (delta < 360*86400)
    bsprintf(x, "%s%02d", month_names[tm->tm_mon], tm->tm_mday);
  else
    bsprintf(x, "%d", tm->tm_year+1900);
428 429
}

430 431
#include "conf/conf.h"

432 433 434 435 436
/**
 * tm_format_datetime - convert date and time to textual representation
 * @x: destination buffer of size %TM_DATETIME_BUFFER_SIZE
 * @t: time
 *
437 438
 * This function formats the given relative time value @t to a textual
 * date/time representation (dd-mm-yyyy hh:mm:ss) in real time.
439
 */
440
void
441
tm_format_datetime(char *x, struct timeformat *fmt_spec, bird_clock_t t)
442
{
443
  const char *fmt_used;
444
  struct tm *tm;
445 446
  bird_clock_t delta = now - t;
  t = now_real - delta;
447 448
  tm = localtime(&t);

449 450
  if (fmt_spec->fmt1 == NULL)
    return tm_format_reltime(x, tm, delta);
451

452 453
  if ((fmt_spec->limit == 0) || (delta < fmt_spec->limit))
    fmt_used = fmt_spec->fmt1;
454
  else
455 456 457 458 459
    fmt_used = fmt_spec->fmt2;

  int rv = strftime(x, TM_DATETIME_BUFFER_SIZE, fmt_used, tm);
  if (((rv == 0) && fmt_used[0]) || (rv == TM_DATETIME_BUFFER_SIZE))
    strcpy(x, "<too-long>");
460 461
}

462 463 464 465 466 467 468 469 470 471
/**
 * DOC: Sockets
 *
 * Socket resources represent network connections. Their data structure (&socket)
 * contains a lot of fields defining the exact type of the socket, the local and
 * remote addresses and ports, pointers to socket buffers and finally pointers to
 * hook functions to be called when new data have arrived to the receive buffer
 * (@rx_hook), when the contents of the transmit buffer have been transmitted
 * (@tx_hook) and when an error or connection close occurs (@err_hook).
 *
472
 * Freeing of sockets from inside socket hooks is perfectly safe.
473 474
 */

475 476 477 478
#ifndef SOL_IP
#define SOL_IP IPPROTO_IP
#endif

479 480 481 482
#ifndef SOL_IPV6
#define SOL_IPV6 IPPROTO_IPV6
#endif

483
static list sock_list;
484
static struct birdsock *current_sock;
485
static struct birdsock *stored_sock;
486 487 488 489 490 491 492 493 494 495
static int sock_recalc_fdsets_p;

static inline sock *
sk_next(sock *s)
{
  if (!s->n.next->next)
    return NULL;
  else
    return SKIP_BACK(sock, n, s->n.next);
}
496 497

static void
498
sk_alloc_bufs(sock *s)
499
{
500 501 502 503 504 505 506
  if (!s->rbuf && s->rbsize)
    s->rbuf = s->rbuf_alloc = xmalloc(s->rbsize);
  s->rpos = s->rbuf;
  if (!s->tbuf && s->tbsize)
    s->tbuf = s->tbuf_alloc = xmalloc(s->tbsize);
  s->tpos = s->ttx = s->tbuf;
}
507

508 509 510
static void
sk_free_bufs(sock *s)
{
511
  if (s->rbuf_alloc)
512 513 514 515
    {
      xfree(s->rbuf_alloc);
      s->rbuf = s->rbuf_alloc = NULL;
    }
516
  if (s->tbuf_alloc)
517 518 519 520 521 522 523 524 525 526 527 528
    {
      xfree(s->tbuf_alloc);
      s->tbuf = s->tbuf_alloc = NULL;
    }
}

static void
sk_free(resource *r)
{
  sock *s = (sock *) r;

  sk_free_bufs(s);
529
  if (s->fd >= 0)
530 531
    {
      close(s->fd);
532 533
      if (s == current_sock)
	current_sock = sk_next(s);
534 535
      if (s == stored_sock)
	stored_sock = sk_next(s);
536
      rem_node(&s->n);
537
      sock_recalc_fdsets_p = 1;
538
    }
539 540
}

541 542 543 544 545 546 547
void
sk_reallocate(sock *s)
{
  sk_free_bufs(s);
  sk_alloc_bufs(s);
}

548 549 550 551
static void
sk_dump(resource *r)
{
  sock *s = (sock *) r;
552
  static char *sk_type_names[] = { "TCP<", "TCP>", "TCP", "UDP", "UDP/MC", "IP", "IP/MC", "MAGIC", "UNIX<", "UNIX", "DEL!" };
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569

  debug("(%s, ud=%p, sa=%08x, sp=%d, da=%08x, dp=%d, tos=%d, ttl=%d, if=%s)\n",
	sk_type_names[s->type],
	s->data,
	s->saddr,
	s->sport,
	s->daddr,
	s->dport,
	s->tos,
	s->ttl,
	s->iface ? s->iface->name : "none");
}

static struct resclass sk_class = {
  "Socket",
  sizeof(sock),
  sk_free,
570 571
  sk_dump,
  NULL
572 573
};

574 575 576 577 578 579 580 581
/**
 * sk_new - create a socket
 * @p: pool
 *
 * This function creates a new socket resource. If you want to use it,
 * you need to fill in all the required fields of the structure and
 * call sk_open() to do the actual opening of the socket.
 */
582 583 584 585 586
sock *
sk_new(pool *p)
{
  sock *s = ralloc(p, &sk_class);
  s->pool = p;
587
  // s->saddr = s->daddr = IPA_NONE;
588 589 590 591 592
  s->tos = s->ttl = -1;
  s->fd = -1;
  return s;
}

593 594 595 596 597 598
static void
sk_insert(sock *s)
{
  add_tail(&sock_list, &s->n);
  sock_recalc_fdsets_p = 1;
}
599

600 601 602 603 604
#ifdef IPV6

void
fill_in_sockaddr(sockaddr *sa, ip_addr a, unsigned port)
{
605
  memset (sa, 0, sizeof (struct sockaddr_in6));
606 607 608
  sa->sin6_family = AF_INET6;
  sa->sin6_port = htons(port);
  sa->sin6_flowinfo = 0;
609 610 611
#ifdef HAVE_SIN_LEN
  sa->sin6_len = sizeof(struct sockaddr_in6);
#endif
612 613 614
  set_inaddr(&sa->sin6_addr, a);
}

615 616 617 618 619 620
static inline void
fill_in_sockifa(sockaddr *sa, struct iface *ifa)
{
  sa->sin6_scope_id = ifa ? ifa->index : 0;
}

621
void
622
get_sockaddr(struct sockaddr_in6 *sa, ip_addr *a, unsigned *port, int check)
623
{
624 625
  if (check && sa->sin6_family != AF_INET6)
    bug("get_sockaddr called for wrong address family (%d)", sa->sin6_family);
626 627 628 629 630 631 632 633
  if (port)
    *port = ntohs(sa->sin6_port);
  memcpy(a, &sa->sin6_addr, sizeof(*a));
  ipa_ntoh(*a);
}

#else

634
void
635
fill_in_sockaddr(sockaddr *sa, ip_addr a, unsigned port)
636
{
637
  memset (sa, 0, sizeof (struct sockaddr_in));
638 639
  sa->sin_family = AF_INET;
  sa->sin_port = htons(port);
640 641 642
#ifdef HAVE_SIN_LEN
  sa->sin_len = sizeof(struct sockaddr_in);
#endif
643 644 645
  set_inaddr(&sa->sin_addr, a);
}

646
static inline void
647
fill_in_sockifa(sockaddr *sa UNUSED, struct iface *ifa UNUSED)
648 649 650
{
}

651
void
652
get_sockaddr(struct sockaddr_in *sa, ip_addr *a, unsigned *port, int check)
653
{
654 655
  if (check && sa->sin_family != AF_INET)
    bug("get_sockaddr called for wrong address family (%d)", sa->sin_family);
656 657
  if (port)
    *port = ntohs(sa->sin_port);
658
  memcpy(a, &sa->sin_addr.s_addr, sizeof(*a));
659
  ipa_ntoh(*a);
660 661
}

662 663
#endif

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734

#ifdef IPV6

/* PKTINFO handling is also standardized in IPv6 */
#define CMSG_RX_SPACE CMSG_SPACE(sizeof(struct in6_pktinfo))
#define CMSG_TX_SPACE CMSG_SPACE(sizeof(struct in6_pktinfo))

static char *
sysio_register_cmsgs(sock *s)
{
  int ok = 1;
  if ((s->flags & SKF_LADDR_RX) &&
      setsockopt(s->fd, IPPROTO_IPV6, IPV6_RECVPKTINFO, &ok, sizeof(ok)) < 0)
    return "IPV6_RECVPKTINFO";

  return NULL;
}

static void
sysio_process_rx_cmsgs(sock *s, struct msghdr *msg)
{
  struct cmsghdr *cm;
  struct in6_pktinfo *pi = NULL;

  if (!(s->flags & SKF_LADDR_RX))
    return;

  for (cm = CMSG_FIRSTHDR(msg); cm != NULL; cm = CMSG_NXTHDR(msg, cm))
    {
      if (cm->cmsg_level == IPPROTO_IPV6 && cm->cmsg_type == IPV6_PKTINFO)
	pi = (struct in6_pktinfo *) CMSG_DATA(cm);
    }

  if (!pi)
    {
      s->laddr = IPA_NONE;
      s->lifindex = 0;
      return;
    }

  get_inaddr(&s->laddr, &pi->ipi6_addr);
  s->lifindex = pi->ipi6_ifindex;
  return;
}

static void
sysio_prepare_tx_cmsgs(sock *s, struct msghdr *msg, void *cbuf, size_t cbuflen)
{
  struct cmsghdr *cm;
  struct in6_pktinfo *pi;

  if (!(s->flags & SKF_LADDR_TX))
    return;

  msg->msg_control = cbuf;
  msg->msg_controllen = cbuflen;

  cm = CMSG_FIRSTHDR(msg);
  cm->cmsg_level = IPPROTO_IPV6;
  cm->cmsg_type = IPV6_PKTINFO;
  cm->cmsg_len = CMSG_LEN(sizeof(*pi));

  pi = (struct in6_pktinfo *) CMSG_DATA(cm);
  set_inaddr(&pi->ipi6_addr, s->saddr);
  pi->ipi6_ifindex = s->iface ? s->iface->index : 0;

  msg->msg_controllen = cm->cmsg_len;
  return;
}
#endif

735 736 737 738
static char *
sk_set_ttl_int(sock *s)
{
#ifdef IPV6
739
  if (setsockopt(s->fd, SOL_IPV6, IPV6_UNICAST_HOPS, &s->ttl, sizeof(s->ttl)) < 0)
740 741 742 743 744
    return "IPV6_UNICAST_HOPS";
#else
  if (setsockopt(s->fd, SOL_IP, IP_TTL, &s->ttl, sizeof(s->ttl)) < 0)
    return "IP_TTL";
#ifdef CONFIG_UNIX_DONTROUTE
745
  int one = 1;
746 747 748 749 750 751 752
  if (s->ttl == 1 && setsockopt(s->fd, SOL_SOCKET, SO_DONTROUTE, &one, sizeof(one)) < 0)
    return "SO_DONTROUTE";
#endif 
#endif
  return NULL;
}

753 754 755
#define ERR(x) do { err = x; goto bad; } while(0)
#define WARN(x) log(L_WARN "sk_setup: %s: %m", x)

756 757 758 759
static char *
sk_setup(sock *s)
{
  int fd = s->fd;
760
  char *err = NULL;
761 762 763

  if (fcntl(fd, F_SETFL, O_NONBLOCK) < 0)
    ERR("fcntl(O_NONBLOCK)");
764 765
  if (s->type == SK_UNIX)
    return NULL;
766
#ifndef IPV6
767
  if ((s->tos >= 0) && setsockopt(fd, SOL_IP, IP_TOS, &s->tos, sizeof(s->tos)) < 0)
768
    WARN("IP_TOS");
769
#endif
770 771 772 773 774 775 776

#ifdef IPV6
  int v = 1;
  if ((s->flags & SKF_V6ONLY) && setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, &v, sizeof(v)) < 0)
    WARN("IPV6_V6ONLY");
#endif

777 778 779
  if (s->ttl >= 0)
    err = sk_set_ttl_int(s);

780
  sysio_register_cmsgs(s);
781 782 783 784
bad:
  return err;
}

785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
/**
 * sk_set_ttl - set TTL for given socket.
 * @s: socket
 * @ttl: TTL value
 *
 * Set TTL for already opened connections when TTL was not set before.
 * Useful for accepted connections when different ones should have 
 * different TTL.
 *
 * Result: 0 for success, -1 for an error.
 */

int
sk_set_ttl(sock *s, int ttl)
{
  char *err;

  s->ttl = ttl;
  if (err = sk_set_ttl_int(s))
    log(L_ERR "sk_set_ttl: %s: %m", err);

  return (err ? -1 : 0);
}

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835

/**
 * sk_set_md5_auth - add / remove MD5 security association for given socket.
 * @s: socket
 * @a: IP address of the other side
 * @passwd: password used for MD5 authentication
 *
 * In TCP MD5 handling code in kernel, there is a set of pairs
 * (address, password) used to choose password according to
 * address of the other side. This function is useful for
 * listening socket, for active sockets it is enough to set
 * s->password field.
 *
 * When called with passwd != NULL, the new pair is added,
 * When called with passwd == NULL, the existing pair is removed.
 *
 * Result: 0 for success, -1 for an error.
 */

int
sk_set_md5_auth(sock *s, ip_addr a, char *passwd)
{
  sockaddr sa;
  fill_in_sockaddr(&sa, a, 0);
  return sk_set_md5_auth_int(s, &sa, passwd);
}

836 837 838 839
int
sk_set_broadcast(sock *s, int enable)
{
  if (setsockopt(s->fd, SOL_SOCKET, SO_BROADCAST, &enable, sizeof(enable)) < 0)
840 841 842 843 844 845
    {
      log(L_ERR "sk_set_broadcast: SO_BROADCAST: %m");
      return -1;
    }

  return 0;
846 847 848 849 850
}


#ifdef IPV6

851 852 853 854 855 856 857 858 859 860 861 862
int
sk_set_ipv6_checksum(sock *s, int offset)
{
  if (setsockopt(s->fd, IPPROTO_IPV6, IPV6_CHECKSUM, &offset, sizeof(offset)) < 0)
    {
      log(L_ERR "sk_set_ipv6_checksum: IPV6_CHECKSUM: %m");
      return -1;
    }

  return 0;
}

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
int
sk_setup_multicast(sock *s)
{
  char *err;
  int zero = 0;
  int index;

  ASSERT(s->iface && s->iface->addr);

  index = s->iface->index;
  if (setsockopt(s->fd, SOL_IPV6, IPV6_MULTICAST_HOPS, &s->ttl, sizeof(s->ttl)) < 0)
    ERR("IPV6_MULTICAST_HOPS");
  if (setsockopt(s->fd, SOL_IPV6, IPV6_MULTICAST_LOOP, &zero, sizeof(zero)) < 0)
    ERR("IPV6_MULTICAST_LOOP");
  if (setsockopt(s->fd, SOL_IPV6, IPV6_MULTICAST_IF, &index, sizeof(index)) < 0)
    ERR("IPV6_MULTICAST_IF");

880 881 882
  if (err = sysio_bind_to_iface(s))
    goto bad;

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
  return 0;

bad:
  log(L_ERR "sk_setup_multicast: %s: %m", err);
  return -1;
}

int
sk_join_group(sock *s, ip_addr maddr)
{
  struct ipv6_mreq mreq;
	
  set_inaddr(&mreq.ipv6mr_multiaddr, maddr);

#ifdef CONFIG_IPV6_GLIBC_20
  mreq.ipv6mr_ifindex = s->iface->index;
#else
  mreq.ipv6mr_interface = s->iface->index;
#endif

903
  if (setsockopt(s->fd, SOL_IPV6, IPV6_JOIN_GROUP, &mreq, sizeof(mreq)) < 0)
904
    {
905
      log(L_ERR "sk_join_group: IPV6_JOIN_GROUP: %m");
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
      return -1;
    }

  return 0;
}

int
sk_leave_group(sock *s, ip_addr maddr)
{
  struct ipv6_mreq mreq;
	
  set_inaddr(&mreq.ipv6mr_multiaddr, maddr);

#ifdef CONFIG_IPV6_GLIBC_20
  mreq.ipv6mr_ifindex = s->iface->index;
#else
  mreq.ipv6mr_interface = s->iface->index;
#endif

925
  if (setsockopt(s->fd, SOL_IPV6, IPV6_LEAVE_GROUP, &mreq, sizeof(mreq)) < 0)
926
    {
927
      log(L_ERR "sk_leave_group: IPV6_LEAVE_GROUP: %m");
928 929 930 931 932 933
      return -1;
    }

  return 0;
}

934

935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
#else /* IPV4 */

int
sk_setup_multicast(sock *s)
{
  char *err;

  ASSERT(s->iface && s->iface->addr);

  if (err = sysio_setup_multicast(s))
    {
      log(L_ERR "sk_setup_multicast: %s: %m", err);
      return -1;
    }

  return 0;
}

int
sk_join_group(sock *s, ip_addr maddr)
{
 char *err;

 if (err = sysio_join_group(s, maddr))
    {
      log(L_ERR "sk_join_group: %s: %m", err);
      return -1;
    }

  return 0;
}

int
sk_leave_group(sock *s, ip_addr maddr)
{
 char *err;

 if (err = sysio_leave_group(s, maddr))
    {
      log(L_ERR "sk_leave_group: %s: %m", err);
      return -1;
    }

  return 0;
}

#endif 

983

984
static void
985 986 987 988
sk_tcp_connected(sock *s)
{
  s->type = SK_TCP;
  sk_alloc_bufs(s);
989
  s->tx_hook(s);
990 991
}

992 993 994 995 996 997 998 999 1000 1001
static int
sk_passive_connected(sock *s, struct sockaddr *sa, int al, int type)
{
  int fd = accept(s->fd, sa, &al);
  if (fd >= 0)
    {
      sock *t = sk_new(s->pool);
      char *err;
      t->type = type;
      t->fd = fd;
1002 1003 1004 1005 1006
      t->ttl = s->ttl;
      t->tos = s->tos;
      t->rbsize = s->rbsize;
      t->tbsize = s->tbsize;
      if (type == SK_TCP)
1007 1008 1009 1010 1011 1012 1013 1014
	{
	  sockaddr lsa;
	  int lsa_len = sizeof(lsa);
	  if (getsockname(fd, (struct sockaddr *) &lsa, &lsa_len) == 0)
	    get_sockaddr(&lsa, &t->saddr, &t->sport, 1);

	  get_sockaddr((sockaddr *) sa, &t->daddr, &t->dport, 1);
	}
1015
      sk_insert(t);
1016 1017 1018
      if (err = sk_setup(t))
	{
	  log(L_ERR "Incoming connection: %s: %m", err);
1019 1020
	  rfree(t);
	  return 1;
1021 1022
	}
      sk_alloc_bufs(t);
1023
      s->rx_hook(t, 0);
1024 1025 1026 1027
      return 1;
    }
  else if (errno != EINTR && errno != EAGAIN)
    {
1028
      s->err_hook(s, errno);
1029 1030 1031 1032
    }
  return 0;
}

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
/**
 * sk_open - open a socket
 * @s: socket
 *
 * This function takes a socket resource created by sk_new() and
 * initialized by the user and binds a corresponding network connection
 * to it.
 *
 * Result: 0 for success, -1 for an error.
 */
1043 1044 1045
int
sk_open(sock *s)
{
1046
  int fd;
1047
  sockaddr sa;
1048 1049 1050 1051 1052 1053 1054 1055
  int one = 1;
  int type = s->type;
  int has_src = ipa_nonzero(s->saddr) || s->sport;
  char *err;

  switch (type)
    {
    case SK_TCP_ACTIVE:
1056 1057
      s->ttx = "";			/* Force s->ttx != s->tpos */
      /* Fall thru */
1058
    case SK_TCP_PASSIVE:
1059
      fd = socket(BIRD_PF, SOCK_STREAM, IPPROTO_TCP);
1060 1061
      break;
    case SK_UDP:
1062
      fd = socket(BIRD_PF, SOCK_DGRAM, IPPROTO_UDP);
1063 1064
      break;
    case SK_IP:
1065
      fd = socket(BIRD_PF, SOCK_RAW, s->dport);
1066
      break;
1067 1068 1069
    case SK_MAGIC:
      fd = s->fd;
      break;
1070
    default:
1071
      bug("sk_open() called for invalid sock type %d", type);
1072 1073 1074 1075 1076 1077 1078
    }
  if (fd < 0)
    die("sk_open: socket: %m");
  s->fd = fd;

  if (err = sk_setup(s))
    goto bad;
1079

1080 1081 1082 1083
  if (has_src)
    {
      int port;

1084
      if (type == SK_IP)
1085 1086 1087 1088 1089 1090 1091 1092
	port = 0;
      else
	{
	  port = s->sport;
	  if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)) < 0)
	    ERR("SO_REUSEADDR");
	}
      fill_in_sockaddr(&sa, s->saddr, port);
1093
      fill_in_sockifa(&sa, s->iface);
1094 1095 1096 1097
      if (bind(fd, (struct sockaddr *) &sa, sizeof(sa)) < 0)
	ERR("bind");
    }
  fill_in_sockaddr(&sa, s->daddr, s->dport);
1098 1099 1100 1101 1102 1103 1104 1105

  if (s->password)
    {
      int rv = sk_set_md5_auth_int(s, &sa, s->password);
      if (rv < 0)
	goto bad_no_log;
    }

1106 1107 1108 1109 1110
  switch (type)
    {
    case SK_TCP_ACTIVE:
      if (connect(fd, (struct sockaddr *) &sa, sizeof(sa)) >= 0)
	sk_tcp_connected(s);
1111 1112
      else if (errno != EINTR && errno != EAGAIN && errno != EINPROGRESS &&
	       errno != ECONNREFUSED && errno != EHOSTUNREACH)
1113 1114 1115 1116 1117 1118
	ERR("connect");
      break;
    case SK_TCP_PASSIVE:
      if (listen(fd, 8))
	ERR("listen");
      break;
1119 1120 1121
    case SK_MAGIC:
      break;
    default:
1122
      sk_alloc_bufs(s);
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
#ifdef IPV6
#ifdef IPV6_MTU_DISCOVER
      {
	int dont = IPV6_PMTUDISC_DONT;
	if (setsockopt(fd, SOL_IPV6, IPV6_MTU_DISCOVER, &dont, sizeof(dont)) < 0)
	  ERR("IPV6_MTU_DISCOVER");
      }
#endif
#else
#ifdef IP_PMTUDISC
      {
	int dont = IP_PMTUDISC_DONT;
	if (setsockopt(fd, SOL_IP, IP_PMTUDISC, &dont, sizeof(dont)) < 0)
	  ERR("IP_PMTUDISC");
      }
#endif
#endif
1140 1141
    }

1142
  sk_insert(s);
1143 1144 1145 1146
  return 0;

bad:
  log(L_ERR "sk_open: %s: %m", err);
1147
bad_no_log:
1148 1149 1150 1151 1152
  close(fd);
  s->fd = -1;
  return -1;
}

1153
void
1154 1155 1156 1157 1158 1159 1160 1161
sk_open_unix(sock *s, char *name)
{
  int fd;
  struct sockaddr_un sa;
  char *err;

  fd = socket(AF_UNIX, SOCK_STREAM, 0);
  if (fd < 0)
1162
    ERR("socket");
1163 1164 1165 1166
  s->fd = fd;
  if (err = sk_setup(s))
    goto bad;
  unlink(name);
1167

1168
  /* Path length checked in test_old_bird() */
1169
  sa.sun_family = AF_UNIX;
1170
  strcpy(sa.sun_path, name);
1171
  if (bind(fd, (struct sockaddr *) &sa, SUN_LEN(&sa)) < 0)
1172 1173 1174
    ERR("bind");
  if (listen(fd, 8))
    ERR("listen");
1175
  sk_insert(s);
1176
  return;
1177

1178
 bad:
1179
  log(L_ERR "sk_open_unix: %s: %m", err);
1180
  die("Unable to create control socket %s", name);
1181 1182
}

1183 1184
static inline void reset_tx_buffer(sock *s) { s->ttx = s->tpos = s->tbuf; }

1185 1186 1187 1188 1189 1190 1191 1192
static int
sk_maybe_write(sock *s)
{
  int e;

  switch (s->type)
    {
    case SK_TCP:
1193
    case SK_MAGIC:
1194
    case SK_UNIX:
1195 1196 1197 1198 1199 1200 1201
      while (s->ttx != s->tpos)
	{
	  e = write(s->fd, s->ttx, s->tpos - s->ttx);
	  if (e < 0)
	    {
	      if (errno != EINTR && errno != EAGAIN)
		{
1202
		  reset_tx_buffer(s);
1203
		  s->err_hook(s, errno);
1204 1205 1206 1207 1208 1209
		  return -1;
		}
	      return 0;
	    }
	  s->ttx += e;
	}
1210
      reset_tx_buffer(s);
1211 1212 1213 1214 1215 1216
      return 1;
    case SK_UDP:
    case SK_IP:
      {
	if (s->tbuf == s->tpos)
	  return 1;
1217

1218 1219
	sockaddr sa;
	fill_in_sockaddr(&sa, s->daddr, s->dport);
1220
	fill_in_sockifa(&sa, s->iface);
1221 1222 1223 1224 1225 1226 1227 1228

	struct iovec iov = {s->tbuf, s->tpos - s->tbuf};
	byte cmsg_buf[CMSG_TX_SPACE];

	struct msghdr msg = {
	  .msg_name = &sa,
	  .msg_namelen = sizeof(sa),
	  .msg_iov = &iov,
1229
	  .msg_iovlen = 1};
1230

1231
	sysio_prepare_tx_cmsgs(s, &msg, cmsg_buf, sizeof(cmsg_buf));
1232 1233
	e = sendmsg(s->fd, &msg, 0);

1234 1235 1236 1237
	if (e < 0)
	  {
	    if (errno != EINTR && errno != EAGAIN)
	      {
1238
		reset_tx_buffer(s);
1239
		s->err_hook(s, errno);
1240 1241 1242 1243
		return -1;
	      }
	    return 0;
	  }
1244
	reset_tx_buffer(s);
1245 1246 1247
	return 1;
      }
    default:
1248
      bug("sk_maybe_write: unknown socket type %d", s->type);
1249 1250 1251
    }
}

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
int
sk_rx_ready(sock *s)
{
  fd_set rd, wr;
  struct timeval timo;
  int rv;

  FD_ZERO(&rd);
  FD_ZERO(&wr);
  FD_SET(s->fd, &rd);

  timo.tv_sec = 0;
  timo.tv_usec = 0;

 redo:
  rv = select(s->fd+1, &rd, &wr, NULL, &timo);
  
  if ((rv < 0) && (errno == EINTR || errno == EAGAIN))
    goto redo;

  return rv;
}

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
/**
 * sk_send - send data to a socket
 * @s: socket
 * @len: number of bytes to send
 *
 * This function sends @len bytes of data prepared in the
 * transmit buffer of the socket @s to the network connection.
 * If the packet can be sent immediately, it does so and returns
 * 1, else it queues the packet for later processing, returns 0
 * and calls the @tx_hook of the socket when the tranmission
 * takes place.
 */
1287 1288 1289 1290 1291 1292 1293 1294
int
sk_send(sock *s, unsigned len)
{
  s->ttx = s->tbuf;
  s->tpos = s->tbuf + len;
  return sk_maybe_write(s);
}

1295 1296 1297 1298 1299 1300 1301
/**
 * sk_send_to - send data to a specific destination
 * @s: socket
 * @len: number of bytes to send
 * @addr: IP address to send the packet to
 * @port: port to send the packet to
 *
1302
 * This is a sk_send() replacement for connection-less packet sockets
1303 1304
 * which allows destination of the packet to be chosen dynamically.
 */
1305 1306 1307
int
sk_send_to(sock *s, unsigned len, ip_addr addr, unsigned port)
{
1308 1309
  s->daddr = addr;
  s->dport = port;
1310 1311 1312 1313 1314
  s->ttx = s->tbuf;
  s->tpos = s->tbuf + len;
  return sk_maybe_write(s);
}

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
/*
int
sk_send_full(sock *s, unsigned len, struct iface *ifa,
	     ip_addr saddr, ip_addr daddr, unsigned dport)
{
  s->iface = ifa;
  s->saddr = saddr;
  s->daddr = daddr;
  s->dport = dport;
  s->ttx = s->tbuf;
  s->tpos = s->tbuf + len;
  return sk_maybe_write(s);
}
*/

1330 1331 1332 1333 1334 1335 1336
static int
sk_read(sock *s)
{
  switch (s->type)
    {
    case SK_TCP_PASSIVE:
      {
1337
	sockaddr sa;
1338 1339 1340 1341 1342 1343
	return sk_passive_connected(s, (struct sockaddr *) &sa, sizeof(sa), SK_TCP);
      }
    case SK_UNIX_PASSIVE:
      {
	struct sockaddr_un sa;
	return sk_passive_connected(s, (struct sockaddr *) &sa, sizeof(sa), SK_UNIX);
1344 1345
      }
    case SK_TCP:
1346
    case SK_UNIX:
1347 1348 1349 1350 1351 1352
      {
	int c = read(s->fd, s->rpos, s->rbuf + s->rbsize - s->rpos);

	if (c < 0)
	  {
	    if (errno != EINTR && errno != EAGAIN)
1353
	      s->err_hook(s, errno);
1354 1355
	  }
	else if (!c)
1356
	  s->err_hook(s, 0);
1357 1358 1359 1360
	else
	  {
	    s->rpos += c;
	    if (s->rx_hook(s, s->rpos - s->rbuf))
1361 1362 1363 1364 1365
	      {
		/* We need to be careful since the socket could have been deleted by the hook */
		if (current_sock == s)
		  s->rpos = s->rbuf;
	      }
1366 1367 1368 1369
	    return 1;
	  }
	return 0;
      }
1370 1371
    case SK_MAGIC:
      return s->rx_hook(s, 0);
1372 1373
    default:
      {
1374
	sockaddr sa;
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
	int e;

	struct iovec iov = {s->rbuf, s->rbsize};
	byte cmsg_buf[CMSG_RX_SPACE];

	struct msghdr msg = {
	  .msg_name = &sa,
	  .msg_namelen = sizeof(sa),
	  .msg_iov = &iov,
	  .msg_iovlen = 1,
	  .msg_control = cmsg_buf,
	  .msg_controllen = sizeof(cmsg_buf),
	  .msg_flags = 0};

	e = recvmsg(s->fd, &msg, 0);
1390 1391 1392 1393

	if (e < 0)
	  {
	    if (errno != EINTR && errno != EAGAIN)
1394
	      s->err_hook(s, errno);
1395 1396 1397
	    return 0;
	  }
	s->rpos = s->rbuf + e;
1398
	get_sockaddr(&sa, &s->faddr, &s->fport, 1);
1399 1400
	sysio_process_rx_cmsgs(s, &msg);

1401 1402 1403 1404 1405 1406
	s->rx_hook(s, e);
	return 1;
      }
    }
}

1407
static int
1408 1409
sk_write(sock *s)
{
1410 1411 1412 1413 1414 1415
  switch (s->type)
    {
    case SK_TCP_ACTIVE:
      {
	sockaddr sa;
	fill_in_sockaddr(&sa, s->daddr, s->dport);
Ondřej Filip's avatar
Ondřej Filip committed
1416
	if (connect(s->fd, (struct sockaddr *) &sa, sizeof(sa)) >= 0 || errno == EISCONN)
1417 1418
	  sk_tcp_connected(s);
	else if (errno != EINTR && errno != EAGAIN && errno != EINPROGRESS)
1419
	  s->err_hook(s, errno);
1420
	return 0;
1421 1422
      }
    default:
1423 1424 1425 1426 1427 1428
      if (s->ttx != s->tpos && sk_maybe_write(s) > 0)
	{
	  s->tx_hook(s);
	  return 1;
	}
      return 0;
1429
    }
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
}

void
sk_dump_all(void)
{
  node *n;
  sock *s;

  debug("Open sockets:\n");
  WALK_LIST(n, sock_list)
    {
      s = SKIP_BACK(sock, n, n);
      debug("%p ", s);
      sk_dump(&s->r);
    }
  debug("\n");
}

#undef ERR
1449
#undef WARN
1450 1451 1452 1453 1454

/*
 *	Main I/O Loop
 */

1455 1456 1457
volatile int async_config_flag;		/* Asynchronous reconfiguration/dump scheduled */
volatile int async_dump_flag;

1458 1459 1460 1461 1462 1463
void
io_init(void)
{
  init_list(&near_timers);
  init_list(&far_timers);
  init_list(&sock_list);
1464
  init_list(&global_event_list);
1465
  krt_io_init();
1466 1467 1468
  init_times();
  update_times();
  srandom((int) now_real);
1469 1470
}

1471 1472 1473
static int short_loops = 0;
#define SHORT_LOOP_MAX 10

1474 1475 1476 1477 1478 1479
void
io_loop(void)
{
  fd_set rd, wr;
  struct timeval timo;
  time_t tout;
1480
  int hi, events;
1481
  sock *s;
1482
  node *n;
1483

1484
  sock_recalc_fdsets_p = 1;
1485 1486
  for(;;)
    {
1487
      events = ev_run_list(&global_event_list);
1488
      update_times();
1489 1490 1491 1492 1493 1494
      tout = tm_first_shot();
      if (tout <= now)
	{
	  tm_shot();
	  continue;
	}
1495 1496
      timo.tv_sec = events ? 0 : tout - now;
      timo.tv_usec = 0;
1497

1498 1499 1500 1501 1502 1503 1504
      if (sock_recalc_fdsets_p)
	{
	  sock_recalc_fdsets_p = 0;
	  FD_ZERO(&rd);
	  FD_ZERO(&wr);
	}

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
      hi = 0;
      WALK_LIST(n, sock_list)
	{
	  s = SKIP_BACK(sock, n, n);
	  if (s->rx_hook)
	    {
	      FD_SET(s->fd, &rd);
	      if (s->fd > hi)
		hi = s->fd;
	    }
1515 1516
	  else
	    FD_CLR(s->fd, &rd);
1517 1518 1519 1520 1521 1522
	  if (s->tx_hook && s->ttx != s->tpos)
	    {
	      FD_SET(s->fd, &wr);
	      if (s->fd > hi)
		hi = s->fd;
	    }
1523 1524
	  else
	    FD_CLR(s->fd, &wr);
1525 1526
	}

1527 1528 1529 1530 1531 1532 1533 1534 1535
      /*
       * Yes, this is racy. But even if the signal comes before this test
       * and entering select(), it gets caught on the next timer tick.
       */

      if (async_config_flag)
	{
	  async_config();
	  async_config_flag = 0;
1536
	  continue;
1537 1538 1539 1540 1541
	}
      if (async_dump_flag)
	{
	  async_dump();
	  async_dump_flag = 0;
1542 1543 1544 1545 1546 1547 1548
	  continue;
	}
      if (async_shutdown_flag)
	{
	  async_shutdown();
	  async_shutdown_flag = 0;
	  continue;
1549 1550 1551
	}

      /* And finally enter select() to find active sockets */
1552
      hi = select(hi+1, &rd, &wr, NULL, &timo);
1553

1554 1555 1556 1557 1558 1559 1560 1561
      if (hi < 0)
	{
	  if (errno == EINTR || errno == EAGAIN)
	    continue;
	  die("select: %m");
	}
      if (hi)
	{
1562 1563 1564
	  /* guaranteed to be non-empty */
	  current_sock = SKIP_BACK(sock, n, HEAD(sock_list));

1565
	  while (current_sock)
1566
	    {
1567 1568
	      sock *s = current_sock;
	      int e;
1569 1570 1571 1572
	      int steps;

	      steps = MAX_STEPS;
	      if ((s->type >= SK_MAGIC) && FD_ISSET(s->fd, &rd) && s->rx_hook)
1573 1574
		do
		  {
1575
		    steps--;
1576 1577 1578 1579
		    e = sk_read(s);
		    if (s != current_sock)
		      goto next;
		  }
1580 1581 1582
		while (e && s->rx_hook && steps);

	      steps = MAX_STEPS;
1583 1584 1585
	      if (FD_ISSET(s->fd, &wr))
		do
		  {
1586
		    steps--;
1587 1588 1589 1590
		    e = sk_write(s);
		    if (s != current_sock)
		      goto next;
		  }
1591
		while (e && steps);
1592 1593
	      current_sock = sk_next(s);
	    next: ;
1594
	    }
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622

	  short_loops++;
	  if (events && (short_loops < SHORT_LOOP_MAX))
	    continue;
	  short_loops = 0;

	  int count = 0;
	  current_sock = stored_sock;
	  if (current_sock == NULL)
	    current_sock = SKIP_BACK(sock, n, HEAD(sock_list));

	  while (current_sock && count < MAX_RX_STEPS)
	    {
	      sock *s = current_sock;
	      int e;

	      if ((s->type < SK_MAGIC) && FD_ISSET(s->fd, &rd) && s->rx_hook)
		{
		  count++;
		  e = sk_read(s);
		  if (s != current_sock)
		      goto next2;
		}
	      current_sock = sk_next(s);
	    next2: ;
	    }

	  stored_sock = current_sock;
1623 1624 1625
	}
    }
}
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635

void
test_old_bird(char *path)
{
  int fd;
  struct sockaddr_un sa;

  fd = socket(AF_UNIX, SOCK_STREAM, 0);
  if (fd < 0)
    die("Cannot create socket: %m");
1636 1637
  if (strlen(path) >= sizeof(sa.sun_path))
    die("Socket path too long");
1638 1639 1640 1641 1642 1643 1644 1645 1646
  bzero(&sa, sizeof(sa));
  sa.sun_family = AF_UNIX;
  strcpy(sa.sun_path, path);
  if (connect(fd, (struct sockaddr *) &sa, SUN_LEN(&sa)) == 0)
    die("I found another BIRD running.");
  close(fd);
}