utils.c 26.8 KB
Newer Older
1
/*  Copyright (C) 2014-2017 CZ.NIC, z.s.p.o. <knot-dns@labs.nic.cz>
2 3 4 5 6 7 8 9 10 11 12 13

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
14
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
15 16
 */

17 18 19
#include <stdarg.h>
#include <string.h>
#include <stdlib.h>
20
#include <stdio.h>
21
#include <arpa/inet.h>
22
#include <sys/time.h>
23
#include <contrib/cleanup.h>
24
#include <contrib/ccan/asprintf/asprintf.h>
25
#include <ucw/mempool.h>
26
#include <gnutls/gnutls.h>
27 28 29
#include <libknot/descriptor.h>
#include <libknot/dname.h>
#include <libknot/rrtype/rrsig.h>
30
#include <libknot/rrset-dump.h>
31
#include <libknot/version.h>
32
#include <uv.h>
33

34 35
#include "lib/defines.h"
#include "lib/utils.h"
36
#include "lib/generic/array.h"
37
#include "lib/nsrep.h"
38
#include "lib/module.h"
39
#include "lib/resolve.h"
40

41 42

/* Always compile-in log symbols, even if disabled. */
43
#undef kr_verbose_status
44 45
#undef kr_verbose_set
#undef kr_log_verbose
46

47
/* Logging & debugging */
48
bool kr_verbose_status = false;
49

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
void *mm_realloc(knot_mm_t *mm, void *what, size_t size, size_t prev_size)
{
	if (mm) {
		void *p = mm->alloc(mm->ctx, size);
		if (p == NULL) {
			return NULL;
		} else {
			if (what) {
				memcpy(p, what,
				       prev_size < size ? prev_size : size);
			}
			mm_free(mm, what);
			return p;
		}
	} else {
		return realloc(what, size);
	}
}
68 69 70 71 72 73 74

void *mm_malloc(void *ctx, size_t n)
{
	(void)ctx;
	return malloc(n);
}

75 76 77 78 79
/*
 * Macros.
 */
#define strlen_safe(x) ((x) ? strlen(x) : 0)

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
/**
 * @internal Convert 16bit unsigned to string, keeps leading spaces.
 * @note Always fills dst length = 5
 * Credit: http://computer-programming-forum.com/46-asm/7aa4b50bce8dd985.htm
 */
static inline int u16tostr(uint8_t *dst, uint16_t num)
{
	uint32_t tmp = num * (((1 << 28) / 10000) + 1) - (num / 4);
	for(size_t i = 0; i < 5; i++) {
		dst[i] = '0' + (char) (tmp >> 28);
		tmp = (tmp & 0x0fffffff) * 10;
	}
	return 5;
}

95 96 97
/*
 * Cleanup callbacks.
 */
98

99 100
static void kres_gnutls_log(int level, const char *message)
{
101
	kr_log_verbose("[gnutls] (%d) %s", level, message);
102 103
}

104
bool kr_verbose_set(bool status)
105
{
106
#ifndef NOVERBOSELOG
107
	kr_verbose_status = status;
108 109 110 111 112 113 114

	/* gnutls logs messages related to our TLS and also libdnssec,
	 * and the logging is set up in a global way only */
	if (status) {
		gnutls_global_set_log_function(kres_gnutls_log);
	}
	gnutls_global_set_log_level(status ? 5 : 0);
115
#endif
116
	return kr_verbose_status;
117 118
}

119
void kr_log_verbose(const char *fmt, ...)
120
{
121
	if (kr_verbose_status) {
122 123 124 125 126 127
		va_list args;
		va_start(args, fmt);
		vprintf(fmt, args);
		va_end(args);
		fflush(stdout);
	}
128 129
}

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
void kr_log_qverbose_impl(const struct kr_query *qry, const char *cls, const char *fmt, ...)
{
	unsigned ind = 0;
	for (const struct kr_query *q = qry; q; q = q->parent)
		ind += 2;
	uint32_t qry_uid = qry ? qry->uid : 0;
	uint32_t req_uid = qry && qry->request ? qry->request->uid : 0;
	/* Simplified kr_log_verbose() calls, first prefix then passed fmt...
	 * Calling it would take about the same amount of code. */
	printf("[%05u.%02u][%s] %*s", req_uid, qry_uid, cls, ind, "");
	va_list args;
	va_start(args, fmt);
	vprintf(fmt, args);
	va_end(args);
	fflush(stdout);
}

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
bool kr_log_trace(const struct kr_query *query, const char *source, const char *fmt, ...)
{
	if (!kr_log_trace_enabled(query)) {
		return false;
	}

	auto_free char *msg = NULL;

	va_list args;
	va_start(args, fmt);
	int len = vasprintf(&msg, fmt, args);
	va_end(args);

	/* Check formatting result before logging */
	if (len < 0) {
		return false;
	}

	query->request->trace_log(query, source, msg);
	return true;
}

169 170
char* kr_strcatdup(unsigned n, ...)
{
171 172 173 174
	if (n < 1) {
		return NULL;
	}

175 176 177 178 179 180
	/* Calculate total length */
	size_t total_len = 0;
	va_list vl;
	va_start(vl, n);
	for (unsigned i = 0; i < n; ++i) {
		char *item = va_arg(vl, char *);
181
		const size_t new_len = total_len + strlen_safe(item);
182 183 184 185
		if (unlikely(new_len < total_len)) {
			va_end(vl);
			return NULL;
		}
186
		total_len = new_len;
187 188 189 190 191 192
	}
	va_end(vl);

	/* Allocate result and fill */
	char *result = NULL;
	if (total_len > 0) {
193
		if (unlikely(total_len + 1 == 0)) return NULL;
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
		result = malloc(total_len + 1);
	}
	if (result) {
		char *stream = result;
		va_start(vl, n);
		for (unsigned i = 0; i < n; ++i) {
			char *item = va_arg(vl, char *);
			if (item) {
				size_t len = strlen(item);
				memcpy(stream, item, len + 1);
				stream += len;
			}
		}
		va_end(vl);
	}

	return result;
}
212

213
int kr_memreserve(void *baton, char **mem, size_t elm_size, size_t want, size_t *have)
214 215 216 217
{
    if (*have >= want) {
        return 0;
    } else {
218
        knot_mm_t *pool = baton;
219 220 221 222 223 224 225 226 227 228 229 230
        size_t next_size = array_next_count(want);
        void *mem_new = mm_alloc(pool, next_size * elm_size);
        if (mem_new != NULL) {
            memcpy(mem_new, *mem, (*have)*(elm_size));
            mm_free(pool, *mem);
            *mem = mem_new;
            *have = next_size;
            return 0;
        }
    }
    return -1;
}
231

232
static int pkt_recycle(knot_pkt_t *pkt, bool keep_question)
233
{
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
	/* The maximum size of a header + query name + (class, type) */
	uint8_t buf[KNOT_WIRE_HEADER_SIZE + KNOT_DNAME_MAXLEN + 2 * sizeof(uint16_t)];

	/* Save header and the question section */
	size_t base_size = KNOT_WIRE_HEADER_SIZE;
	if (keep_question) {
		base_size += knot_pkt_question_size(pkt);
	}
	assert(base_size <= sizeof(buf));
	memcpy(buf, pkt->wire, base_size);

	/* Clear the packet and its auxiliary structures */
	knot_pkt_clear(pkt);

	/* Restore header and question section and clear counters */
	pkt->size = base_size;
	memcpy(pkt->wire, buf, base_size);
	knot_wire_set_qdcount(pkt->wire, keep_question);
252 253 254
	knot_wire_set_ancount(pkt->wire, 0);
	knot_wire_set_nscount(pkt->wire, 0);
	knot_wire_set_arcount(pkt->wire, 0);
255 256

	/* Reparse question */
257 258 259 260
	knot_pkt_begin(pkt, KNOT_ANSWER);
	return knot_pkt_parse_question(pkt);
}

261 262 263 264 265
int kr_pkt_recycle(knot_pkt_t *pkt)
{
	return pkt_recycle(pkt, false);
}

266 267
int kr_pkt_clear_payload(knot_pkt_t *pkt)
{
268
	return pkt_recycle(pkt, knot_wire_get_qdcount(pkt->wire));
269 270
}

271 272 273
int kr_pkt_put(knot_pkt_t *pkt, const knot_dname_t *name, uint32_t ttl,
               uint16_t rclass, uint16_t rtype, const uint8_t *rdata, uint16_t rdlen)
{
274 275
	/* LATER(opt.): there's relatively lots of copying, but ATM kr_pkt_put()
	 * isn't considered to be used in any performance-critical parts (just lua). */
276 277 278 279 280
	if (!pkt || !name)  {
		return kr_error(EINVAL);
	}
	/* Create empty RR */
	knot_rrset_t rr;
281
	knot_rrset_init(&rr, knot_dname_copy(name, &pkt->mm), rtype, rclass, ttl);
282
	/* Create RDATA */
283
	knot_rdata_t *rdata_tmp = mm_alloc(&pkt->mm, offsetof(knot_rdata_t, data) + rdlen);
284 285
	knot_rdata_init(rdata_tmp, rdlen, rdata);
	knot_rdataset_add(&rr.rrs, rdata_tmp, &pkt->mm);
286
	mm_free(&pkt->mm, rdata_tmp); /* we're always on mempool for now, but whatever */
287 288 289
	/* Append RR */
	return knot_pkt_put(pkt, 0, &rr, KNOT_PF_FREE);
}
290

291 292 293 294 295 296 297
void kr_pkt_make_auth_header(knot_pkt_t *pkt)
{
	assert(pkt && pkt->wire);
	knot_wire_clear_ad(pkt->wire);
	knot_wire_set_aa(pkt->wire);
}

298 299 300 301 302 303 304 305 306 307 308 309
const char *kr_inaddr(const struct sockaddr *addr)
{
	if (!addr) {
		return NULL;
	}
	switch (addr->sa_family) {
	case AF_INET:  return (const char *)&(((const struct sockaddr_in *)addr)->sin_addr);
	case AF_INET6: return (const char *)&(((const struct sockaddr_in6 *)addr)->sin6_addr);
	default:       return NULL;
	}
}

310 311 312 313 314 315 316
int kr_inaddr_family(const struct sockaddr *addr)
{
	if (!addr)
		return AF_UNSPEC;
	return addr->sa_family;
}

317 318 319 320 321
int kr_inaddr_len(const struct sockaddr *addr)
{
	if (!addr) {
		return kr_error(EINVAL);
	}
322
	return kr_family_len(addr->sa_family);
323 324
}

325 326 327 328 329 330 331 332 333 334 335 336
int kr_sockaddr_len(const struct sockaddr *addr)
{
	if (!addr) {
		return kr_error(EINVAL);
	}
	switch (addr->sa_family) {
	case AF_INET:  return sizeof(struct sockaddr_in);
	case AF_INET6: return sizeof(struct sockaddr_in6);
	default:       return kr_error(EINVAL);
	}
}

337 338 339 340 341 342 343 344 345 346 347 348 349 350
int kr_sockaddr_cmp(const struct sockaddr *left, const struct sockaddr *right)
{
	if (!left || !right) {
		return kr_error(EINVAL);
	}
	if (left->sa_family != right->sa_family) {
		return kr_error(EFAULT);
	}
	if (left->sa_family == AF_INET) {
		struct sockaddr_in *left_in = (struct sockaddr_in *)left;
		struct sockaddr_in *right_in = (struct sockaddr_in *)right;
		if (left_in->sin_addr.s_addr != right_in->sin_addr.s_addr) {
			return kr_error(EFAULT);
		}
351 352 353
		if (left_in->sin_port != right_in->sin_port) {
			return kr_error(EFAULT);
		}
354 355 356 357 358 359 360
	} else if (left->sa_family == AF_INET6) {
		struct sockaddr_in6 *left_in6 = (struct sockaddr_in6 *)left;
		struct sockaddr_in6 *right_in6 = (struct sockaddr_in6 *)right;
		if (memcmp(&left_in6->sin6_addr, &right_in6->sin6_addr,
			   sizeof(struct in6_addr)) != 0) {
			return kr_error(EFAULT);
		}
361 362 363
		if (left_in6->sin6_port != right_in6->sin6_port) {
			return kr_error(EFAULT);
		}
364 365 366 367 368 369
	} else {
		return kr_error(ENOENT);
	}
	return kr_ok();
}

370 371 372 373 374 375 376 377 378 379 380 381
uint16_t kr_inaddr_port(const struct sockaddr *addr)
{
	if (!addr) {
		return 0;
	}
	switch (addr->sa_family) {
	case AF_INET:  return ntohs(((const struct sockaddr_in *)addr)->sin_port);
	case AF_INET6: return ntohs(((const struct sockaddr_in6 *)addr)->sin6_port);
	default:       return 0;
	}
}

382 383 384 385 386 387 388 389 390 391 392 393
void kr_inaddr_set_port(struct sockaddr *addr, uint16_t port)
{
	if (!addr) {
		return;
	}
	switch (addr->sa_family) {
	case AF_INET:  ((struct sockaddr_in *)addr)->sin_port = htons(port);
	case AF_INET6: ((struct sockaddr_in6 *)addr)->sin6_port = htons(port);
	default: break;
	}
}

394 395 396 397 398 399
int kr_inaddr_str(const struct sockaddr *addr, char *buf, size_t *buflen)
{
	if (!addr || !buf || !buflen) {
		return kr_error(EINVAL);
	}

400
	if (!inet_ntop(addr->sa_family, kr_inaddr(addr), buf, *buflen)) {
401 402
		return kr_error(errno);
	}
403 404 405 406 407
	const int len = strlen(buf);
	const int len_need = len + 1 + 5 + 1;
	if (len_need > *buflen) {
		*buflen = len_need;
		return kr_error(ENOSPC);
408
	}
409 410 411 412 413
	*buflen = len_need;
	buf[len] = '#';
	u16tostr((uint8_t *)&buf[len + 1], kr_inaddr_port(addr));
	buf[len_need - 1] = 0;
	return kr_ok();
414 415
}

416
int kr_straddr_family(const char *addr)
417 418 419 420 421 422 423 424
{
	if (!addr) {
		return kr_error(EINVAL);
	}
	if (strchr(addr, ':')) {
		return AF_INET6;
	}
	return AF_INET;
425 426
}

427 428
int kr_family_len(int family)
{
429 430 431 432 433
	switch (family) {
	case AF_INET:  return sizeof(struct in_addr);
	case AF_INET6: return sizeof(struct in6_addr);
	default:       return kr_error(EINVAL);
	}
434 435
}

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
struct sockaddr * kr_straddr_socket(const char *addr, int port)
{
	switch (kr_straddr_family(addr)) {
	case AF_INET: {
		struct sockaddr_in *res = malloc(sizeof(*res));
		if (uv_ip4_addr(addr, port, res) >= 0) {
			return (struct sockaddr *)res;
		} else {
			free(res);
			return NULL;
		}
	}
	case AF_INET6: {
		struct sockaddr_in6 *res = malloc(sizeof(*res));
		if (uv_ip6_addr(addr, port, res) >= 0) {
			return (struct sockaddr *)res;
		} else {
			free(res);
			return NULL;
		}
	}
	default:
		return NULL;
	}
}

462 463 464 465 466 467 468 469 470 471 472 473 474
int kr_straddr_subnet(void *dst, const char *addr)
{
	if (!dst || !addr) {
		return kr_error(EINVAL);
	}
	/* Parse subnet */
	int bit_len = 0;
	int family = kr_straddr_family(addr);
	auto_free char *addr_str = strdup(addr);
	char *subnet = strchr(addr_str, '/');
	if (subnet) {
		*subnet = '\0';
		subnet += 1;
475
		bit_len = strtol(subnet, NULL, 10);
476 477 478 479 480
		/* Check client subnet length */
		const int max_len = (family == AF_INET6) ? 128 : 32;
		if (bit_len < 0 || bit_len > max_len) {
			return kr_error(ERANGE);
		}
481 482 483
	} else {
		/* No subnet, use maximal subnet length. */
		bit_len = (family == AF_INET6) ? 128 : 32;
484 485 486 487 488 489 490 491 492 493
	}
	/* Parse address */
	int ret = inet_pton(family, addr_str, dst);
	if (ret < 0) {
		return kr_error(EILSEQ);
	}

	return bit_len;
}

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
int kr_straddr_split(const char *addr, char *buf, size_t buflen, uint16_t *port)
{
	const int base = 10;
	long p = 0;
	size_t addrlen = strlen(addr);
	char *p_start = strchr(addr, '@');
	char *p_end;

	if (!p_start) {
		p_start = strchr(addr, '#');
	}

	if (p_start) {
		if (p_start[1] != '\0'){
			p = strtol(p_start + 1, &p_end, base);
			if (*p_end != '\0' || p <= 0 || p > UINT16_MAX) {
				return kr_error(EINVAL);
			}
		}
		addrlen = p_start - addr;
	}

	/* Check if address is valid. */
	if (addrlen >= INET6_ADDRSTRLEN) {
		return kr_error(EINVAL);
	}

	char str[INET6_ADDRSTRLEN];
	struct sockaddr_storage ss;

	memcpy(str, addr, addrlen); str[addrlen] = '\0';

	int family = kr_straddr_family(str);
	if (family == kr_error(EINVAL) || !inet_pton(family, str, &ss)) {
		return kr_error(EINVAL);
	}

	/* Address and port contains valid values, return it to caller */
	if (buf) {
		if (addrlen >= buflen) {
			return kr_error(ENOSPC);
		}
		memcpy(buf, addr, addrlen); buf[addrlen] = '\0';
	}
	if (port) {
		*port = (uint16_t)p;
	}

	return kr_ok();
}

int kr_straddr_join(const char *addr, uint16_t port, char *buf, size_t *buflen)
{
	if (!addr || !buf || !buflen) {
		return kr_error(EINVAL);
	}

	struct sockaddr_storage ss;
	int family = kr_straddr_family(addr);
	if (family == kr_error(EINVAL) || !inet_pton(family, addr, &ss)) {
		return kr_error(EINVAL);
	}

	int len = strlen(addr);
	if (len + 6 >= *buflen) {
		return kr_error(ENOSPC);
	}

	memcpy(buf, addr, len + 1);
	buf[len] = '#';
	u16tostr((uint8_t *)&buf[len + 1], port);
	len += 6;
	buf[len] = 0;
	*buflen = len;

	return kr_ok();
}

572 573
int kr_bitcmp(const char *a, const char *b, int bits)
{
574 575 576 577 578 579 580 581 582 583
	/* We're using the function from lua directly, so at least for now
	 * we avoid crashing on bogus inputs.  Meaning: NULL is ordered before
	 * anything else, and negative length is the same as zero.
	 * TODO: review the call sites and probably remove the checks. */
	if (bits <= 0 || (!a && !b)) {
		return 0;
	} else if (!a) {
		return -1;
	} else if (!b) {
		return 1;
584
	}
585

586
	assert((a && b && bits >= 0)  ||  bits == 0);
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
	/* Compare part byte-divisible part. */
	const size_t chunk = bits / 8;
	int ret = memcmp(a, b, chunk);
	if (ret != 0) {
		return ret;
	}
	a += chunk;
	b += chunk;
	bits -= chunk * 8;
	/* Compare last partial byte address block. */
	if (bits > 0) {
		const size_t shift = (8 - bits);
		ret = ((uint8_t)(*a >> shift) - (uint8_t)(*b >> shift));
	}
	return ret;
602 603
}

604 605
int kr_rrkey(char *key, uint16_t class, const knot_dname_t *owner,
	     uint16_t type, uint16_t additional)
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
{
	if (!key || !owner) {
		return kr_error(EINVAL);
	}
	uint8_t *key_buf = (uint8_t *)key;
	int ret = u16tostr(key_buf, class);
	if (ret <= 0) {
		return ret;
	}
	key_buf += ret;
	ret = knot_dname_to_wire(key_buf, owner, KNOT_DNAME_MAXLEN);
	if (ret <= 0) {
		return ret;
	}
	knot_dname_to_lower(key_buf);
	key_buf += ret - 1;
	ret = u16tostr(key_buf, type);
	if (ret <= 0) {
		return ret;
	}
	key_buf += ret;
	ret = u16tostr(key_buf, additional);
	if (ret <= 0) {
		return ret;
	}
	key_buf[ret] = '\0';
	return (char *)&key_buf[ret] - key;
}

635 636 637 638 639
/** Return whether two RRsets match, i.e. would form the same set; see ranked_rr_array_t */
static inline bool rrsets_match(const knot_rrset_t *rr1, const knot_rrset_t *rr2)
{
	bool match = rr1->type == rr2->type && rr1->rclass == rr2->rclass;
	if (match && rr2->type == KNOT_RRTYPE_RRSIG) {
640 641
		match = match && knot_rrsig_type_covered(rr1->rrs.rdata)
				  == knot_rrsig_type_covered(rr2->rrs.rdata);
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
	}
	match = match && knot_dname_is_equal(rr1->owner, rr2->owner);
	return match;
}

/** Ensure that an index in a ranked array won't cause "duplicate" RRsets on wire.
 *
 * Other entries that would form the same RRset get to_wire = false.
 * See also rrsets_match.
 */
static int to_wire_ensure_unique(ranked_rr_array_t *array, size_t index)
{
	bool ok = array && index < array->len;
	if (!ok) {
		assert(false);
		return kr_error(EINVAL);
	}

	const struct ranked_rr_array_entry *e0 = array->at[index];
	if (!e0->to_wire) {
		return kr_ok();
	}

	for (ssize_t i = array->len - 1; i >= 0; --i) {
		/* ^ iterate backwards, as the end is more likely in CPU caches */
		struct ranked_rr_array_entry *ei = array->at[i];
		if (ei->qry_uid == e0->qry_uid /* assumption: no duplicates within qry */
		    || !ei->to_wire /* no use for complex comparison if @to_wire */
		   ) {
			continue;
		}
		if (rrsets_match(ei->rr, e0->rr)) {
			ei->to_wire = false;
		}
	}
	return kr_ok();
}

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
int kr_ranked_rrarray_add(ranked_rr_array_t *array, const knot_rrset_t *rr,
			  uint8_t rank, bool to_wire, uint32_t qry_uid, knot_mm_t *pool)
{
	/* rr always has one record per rrset
	 * check if another rrset with the same
	 * rclass/type/owner combination exists within current query
	 * and merge if needed */
	for (ssize_t i = array->len - 1; i >= 0; --i) {
		ranked_rr_array_entry_t *stashed = array->at[i];
		if (stashed->yielded) {
			break;
		}
		if (stashed->qry_uid != qry_uid) {
			break;
		}
695 696 697 698
		if (!rrsets_match(stashed->rr, rr)) {
			continue;
		}
		/* Found the entry to merge with.  Check consistency and merge. */
699
		bool ok = stashed->rank == rank && !stashed->cached;
700 701 702
		if (!ok) {
			assert(false);
			return kr_error(EEXIST);
703
		}
704 705 706 707 708
		/* It may happen that an RRset is first considered useful
		 * (to_wire = false, e.g. due to being part of glue),
		 * and later we may find we also want it in the answer. */
		stashed->to_wire = stashed->to_wire || to_wire;

709
		return knot_rdataset_merge(&stashed->rr->rrs, &rr->rrs, pool);
710 711 712 713 714 715 716 717 718 719 720 721 722 723
	}

	/* No stashed rrset found, add */
	int ret = array_reserve_mm(*array, array->len + 1, kr_memreserve, pool);
	if (ret != 0) {
		return kr_error(ENOMEM);
	}

	ranked_rr_array_entry_t *entry = mm_alloc(pool, sizeof(ranked_rr_array_entry_t));
	if (!entry) {
		return kr_error(ENOMEM);
	}
	knot_rrset_t *copy = knot_rrset_copy(rr, pool);
	if (!copy) {
724
		mm_free(pool, entry);
725 726 727 728 729 730
		return kr_error(ENOMEM);
	}

	entry->qry_uid = qry_uid;
	entry->rr = copy;
	entry->rank = rank;
731
	entry->revalidation_cnt = 0;
732 733 734
	entry->cached = false;
	entry->yielded = false;
	entry->to_wire = to_wire;
735 736 737 738 739 740
	if (array_push(*array, entry) < 0) {
		/* Silence coverity.  It shouldn't be possible to happen,
		 * due to the array_reserve_mm call above. */
		mm_free(pool, entry);
		return kr_error(ENOMEM);
	}
741 742

	return to_wire_ensure_unique(array, array->len - 1);
743 744
}

745
int kr_ranked_rrarray_set_wire(ranked_rr_array_t *array, bool to_wire,
746 747
			       uint32_t qry_uid, bool check_dups,
			       bool (*extraCheck)(const ranked_rr_array_entry_t *))
748 749 750
{
	for (size_t i = 0; i < array->len; ++i) {
		ranked_rr_array_entry_t *entry = array->at[i];
751 752 753
		if (entry->qry_uid != qry_uid) {
			continue;
		}
754 755 756
		if (extraCheck != NULL && !extraCheck(entry)) {
			continue;
		}
757
		entry->to_wire = to_wire;
758 759 760
		if (check_dups) {
			int ret = to_wire_ensure_unique(array, i);
			if (ret) return ret;
761 762 763 764 765 766
		}
	}
	return kr_ok();
}


767 768
static char *callprop(struct kr_module *module, const char *prop, const char *input, void *env)
{
769
	if (!module || !module->props || !prop) {
770 771
		return NULL;
	}
772
	for (const struct kr_prop *p = module->props(); p && p->name; ++p) {
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
		if (p->cb != NULL && strcmp(p->name, prop) == 0) {
			return p->cb(env, module, input);
		}
	}
	return NULL;
}

char *kr_module_call(struct kr_context *ctx, const char *module, const char *prop, const char *input)
{
	if (!ctx || !ctx->modules || !module || !prop) {
		return NULL;
	}
	module_array_t *mod_list = ctx->modules;
	for (size_t i = 0; i < mod_list->len; ++i) {
		struct kr_module *mod = mod_list->at[i];
		if (strcmp(mod->name, module) == 0) {
			return callprop(mod, prop, input, ctx);
		}
	}
	return NULL;
793
}
794

795 796 797 798 799 800 801 802
static void flags_to_str(char *dst, const knot_pkt_t *pkt, size_t maxlen)
{
	int offset = 0;
	int ret = 0;
	struct {
		uint8_t (*get) (const uint8_t *packet);
		char name[3];
	} flag[7] = {
803 804 805 806 807
		{knot_wire_get_qr, "qr"},
		{knot_wire_get_aa, "aa"},
		{knot_wire_get_rd, "rd"},
		{knot_wire_get_ra, "ra"},
		{knot_wire_get_tc, "tc"},
808 809
		{knot_wire_get_ad, "ad"},
		{knot_wire_get_cd, "cd"}
810 811 812 813 814 815 816 817 818 819 820
	};
	for (int i = 0; i < 7; ++i) {
		if (!flag[i].get(pkt->wire)) {
			continue;
		}
		ret = snprintf(dst + offset, maxlen, "%s ", flag[i].name);
		if (ret <= 0 || ret >= maxlen) {
			dst[0] = 0;
			return;
		}
		offset += ret;
821
		maxlen -= ret;
822 823 824 825
	}
	dst[offset] = 0;
}

826
static char *print_section_opt(struct mempool *mp, char *endp, const knot_rrset_t *rr, const uint8_t rcode)
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
{
	uint8_t ercode = knot_edns_get_ext_rcode(rr);
	uint16_t ext_rcode_id = knot_edns_whole_rcode(ercode, rcode);
	const char *ext_rcode_str = "Unused";
	const knot_lookup_t *ext_rcode;

	if (ercode > 0) {
		ext_rcode = knot_lookup_by_id(knot_rcode_names, ext_rcode_id);
		if (ext_rcode != NULL) {
			ext_rcode_str = ext_rcode->name;
		} else {
			ext_rcode_str = "Unknown";
		}
	}

842 843 844 845 846 847 848
	return mp_printf_append(mp, endp,
		";; EDNS PSEUDOSECTION:\n;; "
		"Version: %u; flags: %s; UDP size: %u B; ext-rcode: %s\n\n",
		knot_edns_get_version(rr),
		(knot_edns_do(rr) != 0) ? "do" : "",
		knot_edns_get_payload(rr),
		ext_rcode_str);
849 850 851

}

852
char *kr_pkt_text(const knot_pkt_t *pkt)
853
{
854 855 856 857 858 859
	if (!pkt) {
		return NULL;
	}

	struct mempool *mp = mp_new(512);

860 861 862
	static const char * snames[] = {
		";; ANSWER SECTION", ";; AUTHORITY SECTION", ";; ADDITIONAL SECTION"
	};
863
	char flags[32];
864
	uint8_t pkt_rcode = knot_wire_get_rcode(pkt->wire);
865 866 867 868 869 870
	uint8_t pkt_opcode = knot_wire_get_opcode(pkt->wire);
	const char *rcode_str = "Unknown";
	const char *opcode_str = "Unknown";
	const knot_lookup_t *rcode = knot_lookup_by_id(knot_rcode_names, pkt_rcode);
	const knot_lookup_t *opcode = knot_lookup_by_id(knot_opcode_names, pkt_opcode);
	uint16_t qry_id = knot_wire_get_id(pkt->wire);
871
	uint16_t qdcount = knot_wire_get_qdcount(pkt->wire);
872 873 874 875 876 877 878

	if (rcode != NULL) {
		rcode_str = rcode->name;
	}
	if (opcode != NULL) {
		opcode_str = opcode->name;
	}
879
	flags_to_str(flags, pkt, sizeof(flags));
880

881 882 883 884 885 886 887 888 889 890
	char *ptr = mp_printf(mp,
		";; ->>HEADER<<- opcode: %s; status: %s; id: %hu\n"
		";; Flags: %s QUERY: %hu; ANSWER: %hu; "
		"AUTHORITY: %hu; ADDITIONAL: %hu\n\n",
		opcode_str, rcode_str, qry_id,
		flags,
		qdcount,
		knot_wire_get_ancount(pkt->wire),
		knot_wire_get_nscount(pkt->wire),
		knot_wire_get_arcount(pkt->wire));
891 892

	if (knot_pkt_has_edns(pkt)) {
893
		ptr = print_section_opt(mp, ptr, pkt->opt_rr, knot_wire_get_rcode(pkt->wire));
894 895
	}

896
	if (qdcount == 1) {
897 898
		KR_DNAME_GET_STR(qname, knot_pkt_qname(pkt));
		KR_RRTYPE_GET_STR(rrtype, knot_pkt_qtype(pkt));
899
		ptr = mp_printf_append(mp, ptr, ";; QUESTION SECTION\n%s\t\t%s\n", qname, rrtype);
900
	} else if (qdcount > 1) {
901
		ptr = mp_printf_append(mp, ptr, ";; Warning: unsupported QDCOUNT %hu\n", qdcount);
902
	}
903 904

	for (knot_section_t i = KNOT_ANSWER; i <= KNOT_ADDITIONAL; ++i) {
905
		const knot_pktsection_t *sec = knot_pkt_section(pkt, i);
906
		if (sec->count == 0 || knot_pkt_rr(sec, 0)->type == KNOT_RRTYPE_OPT) {
907
			/* OPT RRs are _supposed_ to be the last ^^, if they appear */
908 909
			continue;
		}
910 911

		ptr = mp_printf_append(mp, ptr, "\n%s\n", snames[i - KNOT_ANSWER]);
912 913
		for (unsigned k = 0; k < sec->count; ++k) {
			const knot_rrset_t *rr = knot_pkt_rr(sec, k);
914 915 916 917 918
			if (rr->type == KNOT_RRTYPE_OPT) {
				continue;
			}
			auto_free char *rr_text = kr_rrset_text(rr);
			ptr = mp_printf_append(mp, ptr, "%s", rr_text);
919 920
		}
	}
921

922 923 924 925
	/* Close growing buffer and duplicate result before deleting */
	char *result = strdup(ptr);
	mp_delete(mp);
	return result;
926 927
}

928
char *kr_rrset_text(const knot_rrset_t *rr)
929
{
930 931 932
	if (!rr) {
		return NULL;
	}
933

934
	/* Note: knot_rrset_txt_dump will double the size until the rrset fits */
935 936
	size_t bufsize = 128;
	char *buf = malloc(bufsize);
937 938 939 940 941 942 943
	int ret = knot_rrset_txt_dump(rr, &buf, &bufsize, &KNOT_DUMP_STYLE_DEFAULT);
	if (ret < 0) {
		free(buf);
		return NULL;
	}

	return buf;
944
}
945

Vitezslav Kriz's avatar
Vitezslav Kriz committed
946 947 948 949 950
uint64_t kr_now()
{
	return uv_now(uv_default_loop());
}

951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
const char *kr_strptime_diff(const char *format, const char *time1_str,
		             const char *time0_str, double *diff) {
	assert(format != NULL);
	assert(time1_str != NULL);
	assert(time0_str != NULL);
	assert(diff != NULL);

	struct tm time1_tm;
	time_t time1_u;
	struct tm time0_tm;
	time_t time0_u;

	char *err = strptime(time1_str, format, &time1_tm);
	if (err == NULL || err != time1_str + strlen(time1_str))
		return "strptime failed for time1";
	time1_tm.tm_isdst = -1; /* determine if DST is active or not */
	time1_u = mktime(&time1_tm);
	if (time1_u == (time_t)-1)
		return "mktime failed for time1";

	err = strptime(time0_str, format, &time0_tm);
	if (err == NULL || err != time0_str + strlen(time0_str))
		return "strptime failed for time0";
	time0_tm.tm_isdst = -1; /* determine if DST is active or not */
	time0_u = mktime(&time0_tm);
	if (time0_u == (time_t)-1)
		return "mktime failed for time0";
	*diff = difftime(time1_u, time0_u);

	return NULL;
}

983
int knot_dname_lf2wire(knot_dname_t * const dst, uint8_t len, const uint8_t *lf)
Vladimír Čunát's avatar
.  
Vladimír Čunát committed
984
{
985 986
	knot_dname_t *d = dst; /* moving "cursor" as we write it out */
	bool ok = d && (len == 0 || lf);
Vladimír Čunát's avatar
.  
Vladimír Čunát committed
987 988 989 990
	if (!ok) {
		assert(false);
		return kr_error(EINVAL);
	}
991 992 993 994 995
	/* we allow the final zero byte to be omitted */
	if (!len) {
		goto finish;
	}
	if (lf[len - 1]) {
Vladimír Čunát's avatar
.  
Vladimír Čunát committed
996
		++len;
997 998 999
	}
	/* convert the name, one label at a time */
	int label_end = len - 1; /* index of the zero byte after the current label */
Vladimír Čunát's avatar
.  
Vladimír Čunát committed
1000 1001
	while (label_end >= 0) {
		/* find label_start */
1002
		int i = label_end - 1;
Vladimír Čunát's avatar
.  
Vladimír Čunát committed
1003 1004
		while (i >= 0 && lf[i])
			--i;
1005 1006 1007 1008
		const int label_start = i + 1; /* index of the first byte of the current label */
		const int label_len = label_end - label_start;
		assert(label_len >= 0);
		if (label_len > 63 || label_len <= 0)
Vladimír Čunát's avatar
.  
Vladimír Čunát committed
1009 1010
			return kr_error(EILSEQ);
		/* write the label */
1011 1012 1013 1014
		*d = label_len;
		++d;
		memcpy(d, lf + label_start, label_len);
		d += label_len;
Vladimír Čunát's avatar
.  
Vladimír Čunát committed
1015
		/* next label */
1016
		label_end = label_start - 1;
Vladimír Čunát's avatar
.  
Vladimír Čunát committed
1017
	}
1018
finish:
1019 1020 1021
	*d = 0; /* the final zero */
	++d;
	return d - dst;
1022
}
1023

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
static void rnd_noerror(void *data, uint size)
{
	int ret = gnutls_rnd(GNUTLS_RND_NONCE, data, size);
	if (ret) {
		kr_log_error("gnutls_rnd(): %s\n", gnutls_strerror(ret));
		abort();
	}
}
void kr_rnd_buffered(void *data, uint size)
{
	/* static circular buffer, from index _begin (inclusive) to _end (exclusive) */
	static uint8_t buf[512/8]; /* gnutls_rnd() works on blocks of 512 bits (chacha) */
	static uint buf_begin = sizeof(buf);

	if (unlikely(size > sizeof(buf))) {
		rnd_noerror(data, size);
		return;
	}
	/* Start with contiguous chunk, possibly until the end of buffer. */
	const uint size1 = MIN(size, sizeof(buf) - buf_begin);
	uint8_t *d = data;
	memcpy(d, buf + buf_begin, size1);
	if (size1 == size) {
		buf_begin += size1;
		return;
	}
	d += size1;
	size -= size1;
	/* Refill the whole buffer, and finish by another contiguous chunk. */
	rnd_noerror(buf, sizeof(buf));
	memcpy(d, buf, size);
	buf_begin = size;
}

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
void kr_rrset_init(knot_rrset_t *rrset, knot_dname_t *owner,
			uint16_t type, uint16_t rclass, uint32_t ttl)
{
	assert(rrset);
	knot_rrset_init(rrset, owner, type, rclass, ttl);
}
uint16_t kr_pkt_qclass(const knot_pkt_t *pkt)
{
	return knot_pkt_qclass(pkt);
}
uint16_t kr_pkt_qtype(const knot_pkt_t *pkt)
{
	return knot_pkt_qtype(pkt);
}
1072
uint32_t kr_rrsig_sig_inception(const knot_rdata_t *rdata)
1073
{
1074
	return knot_rrsig_sig_inception(rdata);
1075
}
1076
uint32_t kr_rrsig_sig_expiration(const knot_rdata_t *rdata)
1077
{
1078
	return knot_rrsig_sig_expiration(rdata);
1079
}
1080 1081 1082 1083
uint16_t kr_rrsig_type_covered(const knot_rdata_t *rdata)
{
	return knot_rrsig_type_covered(rdata);
}
1084