network.c 8.25 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*  Copyright (C) 2015 CZ.NIC, z.s.p.o. <knot-dns@labs.nic.cz>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

17
#include <unistd.h>
18
#include <assert.h>
19 20 21 22
#include "daemon/network.h"
#include "daemon/worker.h"
#include "daemon/io.h"

23
/* libuv 1.7.0+ is able to support SO_REUSEPORT for loadbalancing */
24 25
#if defined(UV_VERSION_HEX)
#if (__linux__ && SO_REUSEPORT)
26 27 28 29 30 31 32 33
  #define handle_init(type, loop, handle, family) do { \
	uv_ ## type ## _init_ex((loop), (handle), (family)); \
	uv_os_fd_t fd = 0; \
	if (uv_fileno((uv_handle_t *)(handle), &fd) == 0) { \
		int on = 1; \
		setsockopt(fd, SOL_SOCKET, SO_REUSEPORT, &on, sizeof(on)); \
	} \
  } while (0)
34 35 36 37 38 39
/* libuv 1.7.0+ is able to assign fd immediately */
#else
  #define handle_init(type, loop, handle, family) do { \
	uv_ ## type ## _init_ex((loop), (handle), (family)); \
  } while (0)
#endif
40 41 42 43 44
#else
  #define handle_init(type, loop, handle, family) \
	uv_ ## type ## _init((loop), (handle))
#endif

45 46 47 48 49 50 51 52
void network_init(struct network *net, uv_loop_t *loop)
{
	if (net != NULL) {
		net->loop = loop;
		net->endpoints = map_make();
	}
}

53 54 55 56 57 58 59
static void close_handle(uv_handle_t *handle, bool force)
{
	if (force) { /* Force close if event loop isn't running. */
		uv_os_fd_t fd = 0;
		if (uv_fileno(handle, &fd) == 0) {
			close(fd);
		}
60 61
		handle->loop = NULL;
		io_free(handle);
62
	} else { /* Asynchronous close */
63
		uv_close(handle, io_free);
64 65 66 67 68 69 70
	}
}

static int close_endpoint(struct endpoint *ep, bool force)
{
	if (ep->udp) {
		close_handle((uv_handle_t *)ep->udp, force);
71
	}
72 73
	if (ep->tcp) {
		close_handle((uv_handle_t *)ep->tcp, force);
74 75 76 77 78 79 80
	}

	free(ep);
	return kr_ok();
}

/** Endpoint visitor (see @file map.h) */
81
static int close_key(const char *key, void *val, void *ext)
82 83 84
{
	endpoint_array_t *ep_array = val;
	for (size_t i = ep_array->len; i--;) {
85
		close_endpoint(ep_array->at[i], true);
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
	}
	return 0;
}

static int free_key(const char *key, void *val, void *ext)
{
	endpoint_array_t *ep_array = val;
	array_clear(*ep_array);
	free(ep_array);
	return kr_ok();
}

void network_deinit(struct network *net)
{
	if (net != NULL) {
101
		map_walk(&net->endpoints, close_key, 0);
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
		map_walk(&net->endpoints, free_key, 0);
		map_clear(&net->endpoints);
	}
}

/** Fetch or create endpoint array and insert endpoint. */
static int insert_endpoint(struct network *net, const char *addr, struct endpoint *ep)
{
	/* Fetch or insert address into map */
	endpoint_array_t *ep_array = map_get(&net->endpoints, addr);
	if (ep_array == NULL) {
		ep_array = malloc(sizeof(*ep_array));
		if (ep_array == NULL) {
			return kr_error(ENOMEM);
		}
		if (map_set(&net->endpoints, addr, ep_array) != 0) {
			free(ep_array);
			return kr_error(ENOMEM);
		}
		array_init(*ep_array);
	}

124 125 126 127
	if (array_push(*ep_array, ep) < 0) {
		return kr_error(ENOMEM);
	}
	return kr_ok();
128 129 130 131 132 133
}

/** Open endpoint protocols. */
static int open_endpoint(struct network *net, struct endpoint *ep, struct sockaddr *sa, uint32_t flags)
{
	if (flags & NET_UDP) {
134 135 136 137 138 139
		ep->udp = malloc(sizeof(*ep->udp));
		if (!ep->udp) {
			return kr_error(ENOMEM);
		}
		handle_init(udp, net->loop, ep->udp, sa->sa_family);
		int ret = udp_bind(ep->udp, sa);
140 141 142 143 144 145
		if (ret != 0) {
			return ret;
		}
		ep->flags |= NET_UDP;
	}
	if (flags & NET_TCP) {
146 147 148 149 150 151
		ep->tcp = malloc(sizeof(*ep->tcp));
		if (!ep->tcp) {
			return kr_error(ENOMEM);
		}
		handle_init(tcp, net->loop, ep->tcp, sa->sa_family);
		int ret = tcp_bind(ep->tcp, sa);
152 153 154 155 156 157 158 159
		if (ret != 0) {
			return ret;
		}
		ep->flags |= NET_TCP;
	}
	return kr_ok();
}

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
/** Open fd as endpoint. */
static int open_endpoint_fd(struct network *net, struct endpoint *ep, int fd, int sock_type)
{
	if (sock_type == SOCK_DGRAM) {
		if (ep->udp) {
			return kr_error(EEXIST);
		}
		ep->udp = malloc(sizeof(*ep->udp));
		if (!ep->udp) {
			return kr_error(ENOMEM);
		}
		uv_udp_init(net->loop, ep->udp);
		int ret = uv_udp_open(ep->udp, (uv_os_sock_t) fd);
		if (ret != 0) {
			close_handle((uv_handle_t *)ep->udp, false);
			return ret;
		}
		ep->flags |= NET_UDP;
	}
	if (sock_type == SOCK_STREAM) {
		if (ep->tcp) {
			return kr_error(EEXIST);
		}
		ep->tcp = malloc(sizeof(*ep->tcp));
		if (!ep->tcp) {
			return kr_error(ENOMEM);
		}
		uv_tcp_init(net->loop, ep->tcp);
		int ret = uv_tcp_open(ep->tcp, (uv_os_sock_t) fd);
		if (ret != 0) {
			close_handle((uv_handle_t *)ep->tcp, false);
			return ret;
		}
		ep->flags |= NET_TCP;
	}
	return kr_ok();
}

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
/** @internal Fetch endpoint array and offset of the address/port query. */
static endpoint_array_t *network_get(struct network *net, const char *addr, uint16_t port, size_t *index)
{
	endpoint_array_t *ep_array = map_get(&net->endpoints, addr);
	if (ep_array) {
		for (size_t i = ep_array->len; i--;) {
			struct endpoint *ep = ep_array->at[i];
			if (ep->port == port) {
				*index = i;
				return ep_array;
			}
		}
	}
	return NULL;
}

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
int network_listen_fd(struct network *net, int fd)
{
	/* Extract local address and socket type. */
	int sock_type = SOCK_DGRAM;
	socklen_t len = sizeof(sock_type);
	int ret = getsockopt(fd, SOL_SOCKET, SO_TYPE, &sock_type, &len);	
	if (ret != 0) {
		return kr_error(EBADF);
	}
	/* Extract local address for this socket. */
	struct sockaddr_storage ss;
	socklen_t addr_len = sizeof(ss);
	ret = getsockname(fd, (struct sockaddr *)&ss, &addr_len);
	if (ret != 0) {
		return kr_error(EBADF);
	}
	int port = 0;
	char addr_str[INET6_ADDRSTRLEN]; /* http://tools.ietf.org/html/rfc4291 */
	if (ss.ss_family == AF_INET) {
		uv_ip4_name((const struct sockaddr_in*)&ss, addr_str, sizeof(addr_str));
		port = ntohs(((struct sockaddr_in *)&ss)->sin_port);
	} else if (ss.ss_family == AF_INET6) {
		uv_ip6_name((const struct sockaddr_in6*)&ss, addr_str, sizeof(addr_str));
		port = ntohs(((struct sockaddr_in6 *)&ss)->sin6_port);
	} else {
		uv_ip4_name((const struct sockaddr_in*)&ss, addr_str, sizeof(addr_str));
		port = ntohs(((struct sockaddr_in *)&ss)->sin_port);
		return kr_error(EAFNOSUPPORT);
	}
	/* Fetch or create endpoint for this fd */
	size_t index = 0;
	endpoint_array_t *ep_array = network_get(net, addr_str, port, &index);
	if (!ep_array) {
		struct endpoint *ep = malloc(sizeof(*ep));
		memset(ep, 0, sizeof(*ep));
		ep->flags = NET_DOWN;
		ep->port = port;
		ret = insert_endpoint(net, addr_str, ep);
		if (ret != 0) {
			return ret;
		}
		ep_array = network_get(net, addr_str, port, &index);
	}
	/* Open fd in found/created endpoint. */
	struct endpoint *ep = ep_array->at[index];
	assert(ep != NULL);
	/* Create a libuv struct for this socket. */
	return open_endpoint_fd(net, ep, fd, sock_type);
}

264 265 266 267 268 269
int network_listen(struct network *net, const char *addr, uint16_t port, uint32_t flags)
{
	if (net == NULL || addr == 0 || port == 0) {
		return kr_error(EINVAL);
	}

270
	/* Already listening */
271 272
	size_t index = 0;
	if (network_get(net, addr, port, &index)) {
273 274 275
		return kr_ok();
	}

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
	/* Parse address. */
	int ret = 0;
	struct sockaddr_storage sa;
	if (strchr(addr, ':') != NULL) {
		ret = uv_ip6_addr(addr, port, (struct sockaddr_in6 *)&sa);
	} else {
		ret = uv_ip4_addr(addr, port, (struct sockaddr_in *)&sa);
	}
	if (ret != 0) {
		return ret;
	}

	/* Bind interfaces */
	struct endpoint *ep = malloc(sizeof(*ep));
	memset(ep, 0, sizeof(*ep));
	ep->flags = NET_DOWN;
	ep->port = port;
	ret = open_endpoint(net, ep, (struct sockaddr *)&sa, flags);
	if (ret == 0) {
		ret = insert_endpoint(net, addr, ep);
	}
	if (ret != 0) {
298
		close_endpoint(ep, false);
299 300 301 302 303 304 305
	}

	return ret;
}

int network_close(struct network *net, const char *addr, uint16_t port)
{
306 307 308
	size_t index = 0;
	endpoint_array_t *ep_array = network_get(net, addr, port, &index);
	if (!ep_array) {
309 310 311 312
		return kr_error(ENOENT);
	}

	/* Close endpoint in array. */
313 314
	close_endpoint(ep_array->at[index], false);
	array_del(*ep_array, index);
315

316 317 318 319 320 321 322 323
	/* Collapse key if it has no endpoint. */
	if (ep_array->len == 0) {
		free(ep_array);
		map_del(&net->endpoints, addr);
	}

	return kr_ok();
}